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Preface

This book is intended as a primer in abstract algebra.

My own first encounter with the subject happened in the 8th
grade, at the Moscow school No. 2, one of several specialized schools
in the Soviet Union with advanced math and physics curriculum. It
was a topics course based on opening chapters of van der Waerden’s
“Modern Algebra”. After two years of Euclidean geometry, where
problems were charming but foundations shaky, the prospect of de-
riving everything from a few axioms looked very appealing to a juve-
nile aspiring mathematician. There was one problem though: in the
maze of possible implications from the few axioms, I could not find
my way to solving a single homework exercise. One day I complained
to our teacher, Valery Senderov, and he gave me a guiding thread. It
turned out that the gist of the theory was not in forming neat chains
of implications from the axioms, but rather in answering meaningful
questions about numerous interesting objects populating the realm
of mathematics.

The next year, in an effort to solidify my first (which also turned
out to be my last) formal exposure to the subject, I served some
library time reading thoroughly several chapters from van der Waer-
den’s 1930 classics. Only much later did I realize that his book was
based on lecture courses taught by Emil Artin and Emmy Noether
in 1924–28. Namely, when my son was about to take his abstract
algebra course at Haverford College, I copied for him some chapters
from van der Waerden’s text — and finally read the Introduction.

Some connections looked somewhat symbolic. Emmy Noether’s
ashes rest at the grounds of Haverford’s sister college Bryn Mawr,
where she held her last professorship — after the purge of Jewish
faculty from the University of Göttingen. The textbook selected by
my son’s professor was “Algebra” by Michael Artin; as a child he was
brought by his parents from Germany to the US — for much the
same reason: Emil Artin’s wife had Jewish roots.
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M. Artin’s “Algebra” intersperses chapters on groups, rings, and
fields with others on linear algebra, which in my view makes it incon-
venient for a one-semester course (in either subject). However, the
professor at Haverford, Elizabeth Milićević, managed to assemble the
material around a theme usually left out of the first course — Ga-
lois theory. The approach actually made sense: the abstract idea of
symmetry (groups) and the theory of factorization (rings) ultimately
reconcile in a study of the symmetries of fields.

Next semester I happened to teach an honors course in abstract
algebra to a quite capable group of UC Berkeley students. By the
spring break we had completed successfully the most of the required
material on groups and rings, and so in the remaining part of the
semester I decided to realize the same approach. Over the break, I
wrote self-contained notes on Galois theory of finite field extensions
up to Gauss’ theorem on straightedge-and-compass constructions of
regular polygons and Abel’s theorem on unsolvability of polynomial
equations in radicals.

The present book is a reconstruction of that course from the notes.

Alexander Givental
Department of Mathematics
University of California Berkeley
January 2022
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Prologue

Lecture 1. Sets and functions

The Queen of Sciences has one notable distinction from its loyal sub-
jects: it is self-contained. To validate a mathematical result, there is
no need to rely on somebody else’s conclusions or costly experiments.
Instead, mathematicians are supposed to provide a complete expo-
sition of their theory starting from precise definitions of very basic
terms, and the students are expected to verify every detail of the the-
ory at the tip of their own pens. The first difficulty one encounters
in following this agenda comes when, attempting to rigorously define
basic notions in terms of those previously defined, one runs out of
what was “previously defined”. This is exactly our present position,
for we are about to build a mathematical theory which serves as a
common ground for many further developments. Thus, we have to
start from “ground zero”, which includes introducing some notions
so basic that their meaning can only be explained informally, and
inferred from our common sense and past experience. In fact all we
need in the role of such undefinable notions are sets and functions;
everything else can be then explained and defined quite accurately
and formally.

A. Sets. By a set one means any collection of any objects. That
is, a set X is considered given when for any object x in the Universe it
is known whether this object is an element of the set (written x ∈ X)
or not (x /∈ X). One cannot say more formally what sets are, nor
what elements are, but assumes it is always well-defined whether a
given element and a given set are in this Hamletian relationship: of
the former to be or not to be an element of the latter.

By starting from “ground zero” we do not mean to suggest that the
reader’s life to this point was a total waste. In the contrary, we assume
that everyone is well-familiar with natural, integer, rational, real and
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even complex numbers, and use the following standard notations for
the sets they form (note the declaration formats):

N = {1, 2, 3, . . . }, Z = {0,±1,±2, . . . }, Q = {m
n

∣

∣ m ∈ Z, n ∈ N},
R = {all real numbers}, C = {a+ bi | a, b ∈ R},

[the set’s name] = { [objects] [ | = “such that”] [conditions] } .

Of course, N ⊂ Z ⊂ Q ⊂ R ⊂ C, where A ⊂ B (or B ⊃ A) means
that set A is a subset of set B, i.e. that all elements of A are elements
of B as well.

We also assume that the reader is used to such notations as the
union of sets A∪B, defined as the set of all elements contained in A
or B (or both), intersection A∩B, consisting of all elements common
for A and B, the complement Ac, consisting of all elements not in A,
and is familiar with the basic properties of these operations. For
further details, together with some elements of formal logic, we can
simply refer the reader to courses in Discrete Mathematics where this
material has become standard.

B. Functions. By a function (or mapping, or map) from one set
to another one means a rule that to each element of the former set
associates exactly one element of the latter. This is written as

f : X → Y, X ∋ x 7→ f(x) ∈ Y,

where f is the name of the rule, X is the source set called domain,
Y the target set called codomain, and f(x) denotes the value of the
function at x. A purist would say that functions can be defined in
terms of sets by not distinguishing a function from its graph:

graph(f) := {(x, y) ∈ X × Y | y = f(x)}.

Here X × Y is the Cartesian product of set X and set Y , which
by definition consists of all ordered pairs (x, y) where x ∈ X and
y ∈ Y . To be the graph of a function from X to Y , a subset Γ ⊂
X×Y must for every x ∈ X contain exactly one pair (x, y) (in which
case that unique y is declared to be the value of the function at x).
This formally accurate definition of functions in terms of sets has
one defect: it makes sense only to those who already know informally
what functions are. So, we will distinguish functions, which are rules,
from their graphs, which are certain subsets in the Cartesian product
of the domain and codomain.
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Given two functions g : X → Y and f : Y → Z, their composition
h = f ◦g : X → Z is defined by consecutively applying the two rules:
h(x) := f(g(x)). Note that this operation is defined only when the
domain of f coincides with the codomain of g. In particular, the
composition in the opposite order may be ill-defined. Even when it is
defined, there is no reason to expect that the result is the same. For
instance, sin 2x = 2 sin x cos x 6= 2 sinx. Thus, generally speaking,
composition of functions is not commutative. However, composition
of functions is always associative. Namely, given three functions h :
W → X, g : X → Y , and f : Y → Z, either composition (f ◦ g) ◦ h
and f ◦ (g ◦ h) is defined the same way: by consecutively applying
the three rules: w 7→ h(w) 7→ g(h(w)) 7→ f(g(h(w))). As we will
see, the associativity of algebraic operations is ultimately due to the
associative property of the composition of mappings. For example,
the associativity of addition a+b of real numbers can be explained this
way by interpreting the operation as the composition of translations
x 7→ y = x+ a and y 7→ y + b on the number line.

g

ZYXW
h g f

g   h

f

Figure 1: f ◦ (g ◦ h) = (f ◦ g) ◦ h.

C. Inverses. Given a function f : X → Y , the subset f(X) in Y
consisting of all values of the function is called its range. When the
range is the whole of Y , the function is said to be onto, or surjective.
A function which maps different elements of X to different elements

of Y is called one-to-one, or injective. When both properties hold, the
function is called bijective or a one-to-one correspondence between X
and Y . When this happens, the rule g : Y → X which to each y ∈ Y
assigns that unique x ∈ X such that f(x) = y is well-defined. The
mapping g is called the inverse to f (as it undoes whatever f does)
and is sometimes denoted by f−1. We have:

g ◦ f = idX , f ◦ g = idY ,

where idA : A → A : a 7→ a denotes the identity map. Conversely,
when these compositions of g and f coincide with the respective iden-
tity maps, the functions are inverse to each other. Indeed, f is onto,
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because every y ∈ Y is the value of f at x = g(y) (due to f ◦g = idY ),
and whenever f(x1) = y = f(x2), we have x1 = g(y) = x2 (due to
g◦f = idX), i.e. f is one-to-one, and f−1(y) = g(y). Moreover, these
arguments prove the “if” parts of the following

Proposition 1. (i) A map f : X → Y between non-empty sets is
injective if and only if it has a left inverse, i.e. there exists g : Y → X
such that g ◦ f = idX .

(ii) A map f : X → Y between non-empty sets is surjective if and
only if it has a right inverse, i.e. there exists g : Y → X such that
f ◦ g = idY .

To establish the “only if” part of (i), note that an injective map
f : X → Y is a bijection onto its range f(X) ⊂ Y . To define the left
inverse g : Y → X, take g to be f−1 on the range, and extend g to
y ∈ Y − f(X) (this is the notation for the complement of f(X) in Y )
by g(y) := x0. Here x0 ∈ X is any pre-selected element (and that’s
why we need to assume that X is non-empty). In particular we see
that the left inverse g of an injective but not bijective map can be
non-unique.

X

−1

f

f(X)

x0

X Y

g

g

f

yg(y)

f

f

f

f  (y)

Y

Figure 2: One-sided inverses.

In order to establish the “only if” part of (ii), i.e. to define a right
inverse g : Y → X to an onto map f : X → Y , we pick for each y ∈ Y
one element in the non-empty set f−1(y) := {x ∈ X | f(x) = y}
(called the inverse image of y), and declare it the value of g at y.
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D. The Axiom of Choice. In fact the last argument hides a
subtle flaw. It seems obvious that one can select an element in each
set f−1(y) as long as it is non-empty. However, if you are pressed
to point out a rule, g, that makes such a selection for every y ∈ Y ,
you might find yourself at a loss. When the set X is countable,
that is, can be put into one-to-one correspondence with the set N of
natural numbers, the issue can be resolved as follows. Every non-
empty subset in N contains its smallest element. So, selecting in a
non-empty subset of X that element which under the identification
of X with N corresponds to the smallest element in the subset defines
the required rule. However, the set of real numbers is known to be
uncountable, i.e. it cannot be put in one-to-one correspondence with
N. So, this method wouldn’t work for X = R. Actually in the
course of development of mathematical logic in the 20th century it
was established that it is impossible to describe for every set a definite
selection rule (Kurt Gödel, 1938), and yet assuming the existence of
such a rule would not lead to any contradiction (Paul Cohen, 1963).
Thus it is safe to accept the existence of the rule as an axiom:

Axiom of Choice. For every set, there exists a function that to
every non-empty subset of it associates an element from that subset.

Starting from this point, mathematical results can be divided into
two types: those which do not rely on the Axiom of Choice, and those
which do. In algebra, it is usual to accept this axiom, because several
important general constructions cannot be executed without it. We
will encounter some of such constructions later in this book, and will
discuss some other, more convenient (and seemingly less plausible,
but actually equivalent) reincarnations of this axiom when the need
becomes pressing.

E. Partitions. Let f : X → Y be an onto function. Then X
can be partitioned into non-overlapping subsets f−1(y) according to
the values y ∈ Y of f . More formally, call two elements x1, x2 ∈ X
f -equivalent (and write x1 ∼f x2) whenever f(x1) = f(x2). The
notion of f -equivalence has the following three obvious properties:

(i) It is reflexive: x ∼f x for every x ∈ X.
(ii) It is symmetric: If x1 ∼f x2, then x2 ∼f x1.
(iii) It is transitive: If x1 ∼f x2 and x2 ∼f x3, then x1 ∼f x3.
In fact ∼f is an example of a binary relation, a notion popular

in computer science. By a binary relation on a set X one means any
subset R ⊂ X ×X in the Cartesian square of X. When an ordered
pair (x1, x2) ∈ X ×X lies in R, one says that “x1 and x2 are in the
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relation R”, and writes x1Rx2. As examples, consider the subsets on
the plane R2 = R×R = {(x1, x2) | x1, x2 ∈ R} given by: (a) x1 = x2,
(b) x1 6= x2, (c) x1 ≤ x2, (d) x1 > x2, defining on R the relations of
(a) “equal to”, (b) “unequal to”, (c) “less than or equal to”, and (d)
“strictly greater than” respectively.

A binary relation on a set X satisfying the three properties (i),
(ii), (iii) is called an equivalence relation. The following proposition
shows that (conversely to the above observation) any equivalence re-
lation defines a partition of X.

Proposition 2.Let ∼ be a reflexive, symmetric, and transitive
binary relation on a set X. For every x ∈ X, define the equivalence
class x̄ as the subset in X of all elements x′ ∈ X which are in the
relation ∼ with x: x̄ := {x′ ∈ X | x′ ∼ x}. Then the equivalence
classes form a partition of X.

Proof. By a partition of X we mean of course a representation
of X as the union X = ∪αXα of its subsets Xα which are pairwise
disjoint, i.e. if Xα ∩Xβ 6= ∅ (this is the notation for the empty set),
then Xα = Xβ.

The reflexive property guarantees that x ∈ x̄ and implies that
the union of the equivalence classes equals X. Suppose now that
a ∈ x̄ ∩ ȳ, i.e. a ∼ x and a ∼ y. Then x ∼ a (symmetricity), and
hence any z ∈ x̄ satisfies z ∼ x ∼ a ∼ y, i.e. (using transitivity twice)
z ∈ ȳ. This shows that x̄ ⊂ ȳ. Since likewise ȳ ⊂ x̄, we conclude that
x̄ = ȳ whenever the intersection x̄ ∩ ȳ is non-empty.

As the reader can see, this proposition is tautological, i.e. follows
directly from the definitions1. Nevertheless it is useful as the basis
for the following construction.

Given an equivalence relation ∼ on X, introduce a new set, some-
times denoted by X/ ∼, and called the quotient set, whose elements
are the equivalence classes. Define the projection map π : X → X/ ∼
by associating to an element x ∈ X its equivalence class: π(x) := x̄.
Then the equivalence relation ∼ coincides with ∼π introduced at the
start of this section.

This construction of the projection of a set to the quotient set
defined by an equivalence relation will serve us as a standard tool
beginning with the next lecture.

1Dictionaries define “tautology” as something identical to itself.
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Lecture 2. Integers

A. Modular arithmetic. Here is an important illustration to the
construction of the quotient set.

Let n be a positive integer. Two integers a, b ∈ Z are called
congruent modulo n (notation: a ≡ b mod n) if n divides a − b
(notation: n | a− b), i.e. if there exists k ∈ Z such that a− b = kn.

This is an equivalence relation: (i) n | (a − a); (ii) if n|(a − b),
then n|(b − a); (iii) if n|(a − b) and n|(b − c), i.e. a − b = kn and
b− c = ln for some k, l, then a− c = (a− b)+ (b− c) = (k+ l)n, and
hence n|(a− c).

Therefore the set Z of all integers is partitioned into the con-
gruence classes modulo n. Of course, each congruence class consists
of those integers which have the same remainder upon division by
n. The “skip-counting” exercises in Kindergarten consist in listing
the elements of such congruence classes. Modulo 2, there are two
classes: even and odd integers. Modulo 3, there are three classes:
. . . ,−3, 0, 3, 6, . . . , . . . ,−2, 1, 4, 7, . . . , . . . ,−1, 2, 5, 8, . . . . The set of
congruence classes modulo n is usually denoted by Z/nZ, but we will
often use the shorter notation: Zn.

Proposition. There is a unique way to equip the set Zn of con-
gruence classes modulo n with the operations of addition and multipli-
cation so that the natural projection π : Z → Zn maps the sums and
products of integers into respectively the sums and products of their
congruence classes: π(a+ b) = π(a) + π(b), π(a · b) = π(a) · π(b).

Proof. Note that the operations “+” and “ ·” on the left of the
equality sign are those with integers, and on the right of it are the
operations with the congruence classes in Zn. In fact the uniqueness
of the latter operations becomes obvious once we read the equalities
from right to left. What they tell us is that the sum (product) of two
equivalence classes must be defined by choosing representatives a and
b of these classes in Z, computing the sum a+ b (product a · b) of the
integers, and declaring the congruence class π(a + b) (resp. π(a · b))
of the result to be the sum (product) of the two congruence classes.

What still remains non-obvious is the existence of such operations.
Namely, the construction of the sum and product of two congruence
classes involved some choices: the choices of the representatives of the
classes. Therefore we need to show that the results of the operations
do not depend on the choices.

Indeed, replacing a and b by integers a + kn and b + ln, which
differ from them by multiples of n results in the sum and the product

7



which differ from a+ b and ab by some multiples of n:

(a+ kn) + (b+ ln) = a+ b+ (k + l)n,

(a+ kn)(b+ ln) = ab+ (al + bk + kln)n.

Therefore the congruence classes of the results don’t change.

One may wonder what was the point of concealing under an
abstract construction of the quotient set the simple and familiar
fact that one can add and multiply remainders modulo n, as in
2 + 2 = 4 ≡ 1 mod 3 and 2 · 2 = 4 ≡ 1 mod 3? Later we will
not only see that the abstract point of view has many advantages,
but moreover, that the ability to think in terms of equivalence classes
(rather than in terms of remainders) is an important prerequisite to
understanding algebra. The remainders 0, 1, . . . , n−1 modulo n form
a subset in Z (and indeed can be operated upon under the rule of
“overflow”: whenever the sum or the product exceeds n, it is to be
replaced by the remainder. However, in the modular arithmetic, Zn

is not a subset of Z, but the quotient set. In particular, in Z3, we
have: 2̄ + 2̄ = 4̄ = 2̄ · 2̄, i.e. 4 is just as good a representative of
its congruence class as its remainder 1. (Note that ā denotes the
congruence class of a, and we use the equality ā = b̄ in Zn instead of
a ≡ b mod n in Z.) To illustrate an advantage of the abstract point
of view, consider the following example.

Example. A standard topic in introductory CS texts is the bi-
nary representation of negative numbers. In order to operate with
integers ranging between −2n and +2n, e.g. (choosing for simplic-
ity n = 4) from −11112 to +11112, one is taught to use n + 1-digit
positive binary encoding. Namely, a positive n-digit binary is aug-
mented by the leftmost 0 (e.g. 10102 becomes 010102) while a nega-
tive n+1-digit binary (with 0 in the leftmost place) is replaced with
the complementary positive binary code plus 1 (e.g. −010102 be-
comes 101012 + 12 = 101102). Thus, the leftmost digit indicates the
sign: 0 means positive, and 1 negative. Then, the theory explains,
to operate with (say, add) the binaries, one performs the operations
with the positive n+1-digit binary codes (when of course in the case
of overflow, the n+2-nd digit is lost). Finally, one demonstrates that
the result of the addition represents correctly, through the reverse
encoding, the result of the operation with signed n-digit binaries (at
least when the normal operations with them would not have resulted
in overflow). The demonstration is usually done case-by-case assum-
ing the 1st operand positive or negative, and the 2nd operand positive
or negative (so totally 4 cases, of which one is obvious though).

8



The above (unfortunately typical) exposition demonstrates in fact
a lack in understanding of the modular arithmetic. Operating with
n + 1-digit binaries, so that the “overflow” n + 2-nd digit is lost, is
nothing but the arithmetic in ZN with N = 2n+1. The encoding
rule replaces the representatives of congruence classes taken from the
range −2n ≤ a < 2n with those in the range 0 ≤ b < 2n+1. For
negative a, this results in b = a+2n+1 = (2n+1 − 1)− |a|+ 1 (which
indeed is obtained from the code for |a| by adding 1 to the comple-
mentary code). There is no need, however, to verify the correctness
of operations by a case-by-case analysis, for our Proposition shows
that the operations in ZN are well-defined, i.e. do not depend on the
choice of representatives of the congruence classes.

B. The Euclidean algorithm. Given two integers m and n,
one denotes by G.C.D.(m,n) their greatest common divisor. One
way to define it (so that it would clearly exist) is to take the greatest
of all positive common divisors of m and n. However, the term has
another, stronger meaning, and refers to a positive common divisor
d of m and n which is divisible by every other their common divisor.
Why does such a divisor exist?

The answer was given 23 centuries ago by Euclid in the fifth of his
thirteen books of The Elements. The key observation is that, given
a pair of integers m and n > 0, the set of their common divisors
doesn’t change, when this pair is replaced with n and r, where r is
the remainder upon division of m by n:

m = qn+ r, 0 ≤ r < n.

Therefore, if one continues this way, and replaces n and r by r and
r1 where 0 ≤ r1 < r is the remainder upon division of n by r, and
then by r1 and r2, where r2 is the remainder upon division of r by r1,
and so on, then the set of common divisors of each next pair remains
the same as that of m and n. The steps of such Euclidean algorithm
are possible as long as both integers remain non-zero. However, since
n > r > r1 > r2 > · · · ≥ 0, there can only be finitely many non-zero
remainders, and after at most n steps the pair will become (d, 0).
Here d > 0 is the last non-zero remainder, and the claim is that
d = G.C.D.(m,n). Indeed, the common divisors of m and n are the
same as the common divisors of d and 0, which are just the divisors
of d. Thus, d is a common divisor of m and n, and their every other
common divisor is a divisor of d.

9
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Example: m = 2737, n = 1001. We have: 2737 = 2 · 1001 + 735,
1001 = 1 · 735 + 266, 735 = 2 · 266 + 203, 266 = 1 · 203 + 63, 203 =
3·63+14, 63 = 4·14+7, 14 = 2·7+0. Thus, G.C.D.(2737, 1001) = 7.

The Euclidean algorithm has many remarkable features, and will
reoccur many times throughout the book. One consequence of it
we need to point out right now is that it allows us to represent the
greatest common divisor d as a linear combination of m and n.

Proposition.The greatest common divisor G.C.D.(m,n) is the
smallest positive integer representable as the linear combination km+
ln of m and n with some integer coefficients, k and l.

Indeed, d = km + ln is divisible by every common factor of m
and n, and so, if positive, cannot be smaller than G.C.D.(m,n). On
the other hand, the remainder r = m − qn is a linear combination
of m and n, as well as every subsequent remainder: r1 = n − q1r =
n− q1(m− qn), and so on, up to the last non-zero one.

E.g., working backward through the above example, we find:

7 = 63− 4 · 14 = 63 − 4 · (203 − 3 · 63)
= 13 · 63− 4 · 203 = 13 · (266 − 1 · 203) − 4 · 203
= 13 · 266− 17 · 203 = 13 · 266 − 17 · (735 − 2 · 266)
= 47 · 266− 17 · 735 = 47 · (1001 − 1 · 735) − 17 · 735
= 47 · 1001 − 64 · 735 = 47 · 1001 − 64 · (2737 − 2 · 1001)
= 175 · 1001 − 64 · 2737.

Corollary 1. When integers m and n are coprime, there exist
integers k and l such that km+ ln = 1.

Proof: Indeed, by definition, coprime integers have G.C.D. = 1.

Corollary 2. A congruence class m̄ in Zn is multiplicatively
invertible if and only if m is coprime to n.

Proof. If km ≡ 1 mod n, then km − 1 = ln for some l, and
hence G.C.D.(m,n) = 1. Conversely, if km + ln = 1, then km ≡ 1
mod n, and hence k̄ is inverse to m̄ in Zn.

C. Prime factorization. An integer p > 1 which is divisible
only by 1 and by itself is called . . . No, it is not called “prime”,
it is called irreducible, meaning that it cannot be factored in any
non-trivial way, or equivalently cannot be represented as the product

10



p = ab of smaller integers: |a|, |b| < p. By definition, a number p is
called prime if p|ab implies p|a or p|b.

Being prime is potentially a stronger property than being irre-
ducible. Indeed, if p is prime, and p = ab, then one of a and b must
be divisible by p (say, b = pc), and hence ac = 1, making a = ±1,
and the factorization of p trivial.

Note that this argument is essentially tautological: we use only
the definitions of “prime” and “irreducible”. In fact the converse state-
ment: “an irreducible integer is prime” is also true, but it cannot be
obtained by merely manipulating with definitions. Indeed, such a
manipulation would lead to a contradiction when applied to the fol-
lowing example of an irreducible number which is not prime.

Example. Instead of integers, consider the system R ⊂ C of
complex numbers of the form z = a + b

√
−3, where a, b ∈ Z. In R,

we have
2 · 2 = (1 +

√
−3)(1−

√
−3).

This shows that 2 is not prime in R, since it divides the product
(equal to 4), but clearly does not divide any of 1 ±

√
−3. We claim

that nonetheless 2 is irreducible in R. To show this, introduce the
norm

N(a+ b
√
−3) := (a+ b

√
−3)(a− b

√
−3) = a2 + 3b2.

It a non-negative integer taking values 0, 1, 3, 4, . . . , but not 2. In-
deed, N = 0 means a = b = 0; N = 1 is true only for a+b

√
−3 = ±1;

when |b| ≥ 1 we have N ≥ 3, and if |a| ≥ 2, then N ≥ 4. If 2 could
be factored in R in any nontrivial way: 2 = zw, i.e. with none of
z, w equal ±1, then 4 = N(2) = (zz̄)(ww̄) = N(z)N(w) would be
a non-trivial factorization of 4 into the values of the norm, which is
impossible.

In fact in this example, the number 4 is factored in two different
ways into a product of irreducibles. One could argue that in Z irre-
ducible numbers are prime because the factorization into irreducibles
is unique. Indeed, if an irreducible p divides ab, then it must appear
in the factorization of at least one of a, b. However, this argument
takes the Fundamental Theorem of Arithmetic for granted. Since we
are currently at the “ground zero”, we should prove it first.

The Fundamental Theorem of Arithmetic. Every integer n >
1 can be factored into the product of irreducible positive integers, and
such a factorization is unique up to reordering of the factors.

11



Proof. The existence part is straightforward. We take an integer
n > 1; if it is irreducible, we are done. Otherwise we factor it as
n = ab, where 1 < a, b < n, and proceed the same way with each a
and b. Since there are only finitely many integers between 1 and n, the
process would stop after finitely many steps, and yield a factorization
n = p1 · · · pN , where each pi is irreducible.

Now let us try to establish uniqueness. For this, we should start
with another factorization

p1 · · · pN = q1 · · · qM ,

where all qj are irreducible too, and show that M = N , and that the
list of pi differs from the list of qj only by ordering. Thus, we start
with p1 and try to find it among qj. If M = 1, then p1|q1, i.e. p1 = q1
(since both are irreducible) and we are done. However, when M > 1,
we get stuck, exactly because we don’t know yet whether p1|q1q2
implies p1|q1 or p1|q2, i.e. whether an irreducible p1 is necessarily
prime. So, we need the following lemma, which can be derived from
the Euclidean algorithm.

Lemma. In Z, every irreducible is prime.

Proof. Suppose p|ab and p ∤ a. If p is irreducible, we have
G.C.D.(p, a) = 1, and hence 1 = kp + la for some k and l. Then
b = kpb+ lab, where ab is divisible by p, and hence p|b.

Now we can complete the proof of uniqueness of prime factor-
ization. Indeed, if p1|(q1 · · · qM−1)qM , then either p1|qM and hence
p1 = qM , or p1|q1 · · · qM−1. In the second case we similarly conclude
that either p1 = qM−1, or p1|q1 · · · qM−2, and so on. Thus, one way
or another, we find that p1 must coincide with one of qj. Renam-
ing the qs so that p1 comes first, and canceling p1 on both sides,
we obtain equal factorizations: p2 . . . pN = q2 · · · qM . Proceeding the
same way with p2, then p3, and so on, we find after N steps, that
1 = qM−N+1 · · · qM , i.e. M = N and the list of ps coincides with that
of qs after renumbering.

D. Euler’s ϕ-function. Euler denoted by ϕ(n) the number of
remainders modulo n coprime to n. This is therefore the number of
multiplicatively invertible congruence classes in Zn. The set of such
congruence classes is denoted Z×

n . Of course, the product of invertible
classes in invertible (and b−1a−1 is the inverse to ab). We will later
learn that Zn is a ring, and Z×

n is a group, called the group of units of
the ring Zn. Anyhow, ϕ(n) = |Z×

n |. This function has the following
multiplicative property.
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Proposition. ϕ(mn) = ϕ(m)ϕ(n) provided that m and n are
coprime.

Proof. Consider the map ρ : Zmn → Zm × Zn which to the
congruence class ā of an integer a modulo mn assigns the pair of
its congruence classes modulo m and modulo n respectively. When
G.C.D(m,n) = 1, the map is injective, Indeed, if a ≡ b mod m and
a ≡ b mod n, then a−b is divisible by m and by n. It follows from the
prime factorization that a−b is divisible by mn, i.e. a ≡ b mod mn.
Since both Zmn and Zm × Zn have mn elements, we conclude that ρ
is a bijection.

This fact is known as the Chinese Remainder Theorem.
Clearly, ρ(a + b) = ρ(a) + ρ(b) and ρ(ab) = ρ(a)ρ(b). In other

words, the operations with congruence classes modulo mn agree with
the componentwise operations with pairs of congruence classes mod-
ulo m and n: (α′, β′)+(α′′, β′′) = (α′+α′′, β′+β′′) and (α′, β′)(α′′, β′′)
= (α′α′′, β′β′′). In particular, since ρ(1̄) = (1̄, 1̄), a class a ∈ Zmm is
multiplicatively invertible whenever (α, β) := ρ(a) is multiplicatively
invertible in Zm×Zn, i.e. when α is invertible in Zm and β is invert-
ible in Zn. Thus, ρ identifies Z×

mn with Z×
m × Z×

n . The cardinalities
of these sets are ϕ(mn) and ϕ(m)ϕ(n) by the definition of Euler’s
function.

Corollary (Euler’s formula). For n = pr11 · · · prkk where pi are
distinct primes and ri > 0, we have

ϕ(n) = n

(

1− 1

p1

)

· · ·
(

1− 1

pk

)

=
k
∏

i=1

(pi − 1)pri−1
i .

Proof. Applying this proposition k−1 times we find that ϕ(n) =
ϕ(pr11 )ϕ(pr22 · · · prkk ) = · · · = ϕ(pr11 ) · · ·ϕ(prkk ). It remains to notice
that out of pr remainders modulo the r-th power of a prime p, there
are pr−1 not coprime to pr: they are 0, p, 2p, . . . . Thus, ϕ(pr) =
pr − pr−1.

E. Induction. In the recent arguments we had to use several
times the awkward phrase “and so on”, meaning that the same rea-
soning is to be repeated over and over again. In fact this is a hidden
way of applying a powerful logical tool called mathematical induction.

Suppose we have a sequence P1, P2, . . . , Pn, . . . of propositions i.e.
statements which are either true or false. The principle of mathe-
matical induction says that in order to confirm all Pn, it suffices to

13



derive each Pn from the induction hypothesis that Pk are true for all
k < n. Note that the set of k < n is empty for n = 1 and non-empty
for n > 1. So, in practice this amounts to proving two statements:

1◦ (base of induction): P1 is true;

2◦ (step of induction): For all n > 1, Pn−1 implies Pn.

For example, let Pn be: “If a prime p divides a product a0a1 · · · an,
then p divides at least one of the factors”. The base of induction holds
because p is prime, i.e. p|a0a1 implies p|a0 or p|a1 by definition. Now,
if p|a0 · · · an−1an, then either p|an, or p|a0 · · · an−1 and therefore (by
the induction hypothesis) p divides at least one of a0, . . . , an−1. Ei-
ther way, p divides one of a0, . . . , an−1, an. According to the principle
of mathematical induction all Pn are true.

The principle itself is established the following way. We want to
show that the set of n for which Pn is false is empty. If non-empty,
we take n0 to be the smallest integer in this set, and arrive at a
contradiction. Indeed, since Pk are true for all k < n0, the induction
hypothesis holds for Pn0

, and hence Pn0
must be true.

We see that the principle of mathematical induction is based on
the property of every non-empty set of natural numbers to have a
smallest element with respect to the usual ordering of N = {1, 2, . . . }.
This property is called well-ordering.

By definition, a partial ordering on a set X is a binary relation
(let us denote it �) which is reflexive (x � x for all x ∈ X), transitive
(x � y and y � z imply x � z), and anti-symmetric: x � y and y � x
imply x = y.

For example, any collection of subsets of any set is partially or-
dered by inclusion “⊂”. Another example that will be important to us
is the ordering of the set N of natural numbers by divisibility: m � n
whenever m|n.

These orderings are “partial” in the sense that some pairs of el-
ements can be uncomparable. A partial ordering such that any two
elements x, y ∈ X are comparable, i.e. either x � y or y � x, is called
linear ordering or total ordering. For instance, the usual order on the
number line is linear. However, many non-empty subsets in R, e.g.
the whole of R, or the set R>0 of strictly positive real numbers, have
no smallest element. A linearly ordered set (X,�) in which every
non-empty subset contains a smallest element is called well-ordered.

Given a collection of propositions Pα indexed by elements α ∈
(X,�) of a well-ordered set, the principle of transfinite induction
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holds true: if for every α ∈ X, Pα is true whenever Pβ are true for
all β ≺ α (i.e. β � α but β 6= α), then Pα are true for all α ∈ X.

Zermelo’s theorem. Every set can be well-ordered.

For example, every countable set, i.e. a set that can be put into
one-to-one correspondence with N, once such a correspondence is
established, becomes well-ordered by the usual order on N. It turns
out, however, that for uncountable sets, the well-ordering property,
despite being called “theorem”, cannot be proved, as it is equivalent to
the Axiom of Choice. In particular, uncountable sets (e.g. R) don’t
have any natural, explicitly describable well-ordering. We refer the
reader to Appendix I at the end of the book, where the equivalence of
the Axiom of Choice, Zermelo’s Theorem, and one more formulation,
called Zorn’s Lemma is established.

On several important occasions we will have to rely on the Axiom
of Choice and the principle of transfinite induction, disguised as an
application of Zorn’s Lemma. We postpone the discussion of it until
the need occurs.

F. Groups, rings, and fields. The three parts of the theory
are quite distinct in their nature.

In mathematics and physics one deals with sets equipped with
some structures. We have seen sets equipped with an ordering, or
an equivalence relation, or arithmetic operations, or sets per se (i.e.
equipped with no structure). All such objects have symmetries, i.e.
permutations of the set preserving the structure. By definition, per-
mutations are invertible functions from a set to itself. They can be
composed to form new permutations. Composing symmetries of a
given structure, one obtains new symmetries. The algebraic system
thus formed is called a group: the group of all symmetries of a given
structure. Thus, the theory of groups studies symmetries of any ob-
jects.

The theory of rings takes its origin in the arithmetic of integers,
which can be added and multiplied. Thus, Z, Zn, Q, R, C are exam-
ples of rings. However, number-valued functions can also be added
and multiplied, and consequently the rings of numbers can be studied
in parallel with the rings of functions, occurring in geometry. The
main focus in our theory of rings will be on the uniqueness of factor-
ization, and the Fundamental Theorem of Arithmetic will serve us as
a model.

The rings Q, R, C of rational, real and complex numbers are ac-
tually fields, meaning that all their non-zero elements are invertible.
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This property is important, for instance, in the definition of a vector
space in linear algebra, where the scalars need to form a field (in
order to enable, e.g., the “row operations”). Integers modulo a prime
p also form a field, Zp, but in fact there are many more. The the-
ory due to Évariste Galois studies symmetries of fields (of which the
complex conjugation can serve as the first example). Here the fac-
torization theory in the rings of polynomial functions combines with
the theory of groups in order to solve the millenniums-old problems
about the possibility of constructing regular polygons by straightedge
and compass, and representing the roots of polynomial equations by
radicals.

EXERCISES

1. Give examples of matrices which: (a) have right inverse but no left
inverse, (b) have left inverse but no right inverse.

2. Give examples of binary relations which possess two of the three prop-
erties of reflexivity, symmetricity, and transitivity, but not the third one.

3. Using the Euclidean algorithm, (a) find the greatest common divisor d
of 1763 and 991, (b) express d as an integer linear combination of 1763 and
991, and (c) if 991 is invertible modulo 1763, find the inverse.

4. Check that the set R of complex numbers of the form a+ b
√
−5, where

a, b are arbitrary integers, is closed with respect to addition and multipli-
cation, and show that 2 and 3 are irreducible in R but not prime.

5. Compute multiplicative inverses of all elements in: (a) Z×

8
, (b) Z×

10
.

6. Establish explicitly the bijection ρ : Z6 → Z2 × Z3.

7. Prove that ϕ(mn) 6= ϕ(m)ϕ(n) whenever m and n are not coprime.

8. For prime p, show that p|
(

p
k

)

:= n!/k!(n−k)! when 0 < k < p. Using the
binomial formula and induction on a = 0, 1, 2, . . . , p − 1, derive Fermat’s

Little Theorem: ap ≡ a mod p.

9. Verify the principle of transfinite induction.

10. Show that Zp is a field if p is prime.

11. Let ABCD be a rectangle which is not a square, X = {A,B,C,D} the
set of its vertices, and Y = {V,H, S} the set of three objects, namely of the
3 partitions of X into two pairs: vertices connected by vertical edges (say,
AB and DC), by horizontal edges (BC and AD), and by diagonals (AC
and BD). Study how permutations on X induce those on Y . Show that
each of the 6 permutations of Y is induced by 4 permutations of X , and
describe geometrically which four induce the identity permutation on Y .
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Groups

Lecture 3. Groups and isomorphisms

A. Groups of symmetries. Most expositions of the group theory
begin, naturally, with the definition of an abstract group. So, let’s
for a change begin ours with examples. As we mentioned at the end
of the previous lecture, groups usually arise in studying symmetries
of various structures.

Let X be a set. An invertible function σ : X → X is called a per-
mutation of X. Such permutations can be considered as symmetries
of the set X equipped with no structure. The composition σ ◦ λ of
two permutations (i.e. λ followed by σ) is a permutation again. Its
inverse (σ ◦λ)−1 = λ−1 ◦σ−1 (in this order: undoing first σ, and then
λ). All such permutations (including the identity permutation idX)
form a group, denoted S(X), and called the group of permutations
on the set X.

When X = {1, . . . , n}, the group S(X), usually denoted Sn, is
called the symmetric group on n objects. It consists of n! elements.

It is harder to imagine the group of all permutations of an infinite
set, e.g. the set R2 of points on the plane. Here S(R2) consists of
all bijective functions σ : R2 → R2 (moving the points around with
no regard for any geometric properties we usually associate with the
plane).

Now equip the plane R2 with the topological structure, i.e. in-
formation on which sequences of points converge and to what limits.
A permutation σ : R2 → R2 such that both σ and σ−1 are con-
tinuous, i.e. such that lim pn = p∞ implies limσ(pn) = σ(p∞) and
limσ−1(pn) → σ−1(p∞), is called a homeomorphism of R2. All home-
omorphisms form a subgroup H(R2) ⊂ S(X), the group of symmetries
of R2 considered as a topological space.
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If, in addition to be homeomorphisms, the permutations are re-
quired to be differentiable (say, infinitely differentiable, to be defi-
nite), then they become symmetries of the smooth structure on R2,
and form the group of diffeomorphisms D(R2) ⊂ H(R2) — the group
of all invertible (and possibly non-linear) changes of coordinates on
the plane.

The much smaller supply of changes of coordinates, the linear
inhomogeneous ones:

(x, y) 7→ (ax+ by + x0, cx+ dy + y0),

where ad−bc must be non-zero to guarantee invertibility, form a group
A(R2) of affine transformations of the plane, i.e. the symmetries of
the affine structure. They are compositions of homogeneous linear
transformations (these have x0 = y0 = 0) with translations (x, y) 7→
(x+ x0, y + y0).

The translations do not preserve the origin. If, however, the origin
on the affine plane is considered a part of the structure, the plane R2

becomes a 2-dimensional real vector space. The symmetries of it are
only the invertible homogeneous linear transformations:

[

x
y

]

7→
[

a b
c d

] [

x
y

]

, ad− bc 6= 0.

The composition of such linear transformations results in the mul-
tiplication of the corresponding coefficient matrices. Therefore the
group can be identified with that of invertible real 2 × 2-matrices,
called the general linear group GL2(R).

Adding to the structure of the vector space the orientation of the
plane, i.e. a choice of one of the two directions of rotation: clock-
wise or counter-clockwise, we obtain in the role of symmetry group
the group GL+

2 (R) of orientation-preserving linear transformations.
In matrix terms, it consists of real 2 × 2-matrices with positive de-
terminants: the corresponding linear transformations keep the clock-
wise direction of rotation clockwise, and counter-clockwise counter-
clockwise, while the matrices with ad− bc < 0 interchange them.

Since the determinant is multiplicative, detAB = (detA)(detB),
the matrices with det = 1 form a subgroup in GL+

2 (R), denoted
SL2(R) and called the special linear group. It is the symmetry group
of the plane equipped with the structures of a vector space, orienta-
tion, and area: the absolute value |detA| equals the factor by which
the areas of regions on the plane are changed by the transformation
~u 7→ A~u.
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Returning to the structureless R2 and then equipping it with the
Euclidean distance structure, we obtain in the role of symmetries the
group E(R2) of rigid motions of the plane. Though it is not en-
tirely obvious, all rigid motions are affine. They can be described
as compositions of translations (x, y) 7→ (x + x0, y + y0) with or-
thogonal transformations, i.e. linear transformations preserving the
dot-product structure on R2. The orthogonal transformations per se
form the orthogonal group of R2, denoted O2. Of course, such trans-
formations have det = ±1 (because when distances are preserved, the
areas are preserved too). It is not too hard to show that orthogonal
transformations with determinant +1 (thus, orientation-preserving
ones) are rotations of the plane about the origin. They form the
special orthogonal group of the plane denoted SO2. An orthogonal
transformation of R2 which has determinant −1 (i.e. reverses the
orientation) is in fact a reflection about a line passing through the
origin.

One can draw on the Euclidean plane any figure and ask about
symmetries of it. While a random figure will have no symmetries (i.e.
its symmetry group will consist only of the identity permutation of
the plane), some symmetric figures will have more. For example, an
equilateral triangle ABC has 6 symmetries: three reflections about its
symmetry axes, and three rotations (through 0◦, 120◦, and −120◦)
about the triangle’s center. In fact these symmetries permute the
vertices A,B,C arbitrarily, identifying thereby the group S(△) of
Euclidean symmetries of the equilateral triangle with the group S3 of
3! = 6 permutations of {A,B,C}.

Here is our chart of the symmetry groups of the above structures:

S(R2) ⊃ H(R2) ⊃ D(R2) ⊃A(R2) ⊃ GL2(R) ⊃ GL+
2 (R) ⊃ SL2(R)

∪ ∪ ∪ ∪
E(R2) ⊃ O2 ⊃ SO2 = SO2

∪
S(△)

B. Abstract groups. In the above examples of groups, the
algebraic operation was the same: the composition of functions. In
the abstract definition of a group the nature of the operation is not
specified. The reader probably can guess what the definition is.
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A group is defined as a set, G, equipped with a binary opera-
tion, i.e. a function G × G → G, which to every ordered pair (a, b)
of elements from G associates another element from G, called their
product, and denoted ab, in such a way that the following three re-
quirements (often referred to as “axioms”) hold:

(i) (ab)c = a(bc) for all a, b, c ∈ G (associativity);
(ii) there exists a unique element e ∈ G, called the identity, such

that ae = a = ea for all a ∈ G;
(iii) for every element a ∈ G, there exists a unique element, a′,

called the inverse of a (and often denoted a−1) such that aa′ = e =
a′a.

C. Remarks. (a) A minimalist could complain that some of the
above requirements are redundant. For instance, one does not need
to assume the uniqueness of the identity, nor that it is two-sided, for
it suffices to assume only the existence of at least one eL, and one eR
such that eLa = a and aeR = a for all a ∈ G. Indeed, this implies
eL = eLeR = eR, i.e. that every left identity is equal to every right
one, meaning that it is unique and two-sided. Likewise, if a′L and
a′R are a left and a right inverse to a, then a′R = ea′R = (a′La)a

′
R =

a′L(aa
′
R) = a′Le = a′L, i.e. every left inverse is equal to every right

inverse, implying that the inverse is unique and two-sided.
(b) In a group, multiplying ac = bc (ca = cb) by c−1 on the right

(resp. on the left) we derive a = b, i.e. the cancellation rule holds.
Likewise, the equations ax = b and ya = b have unique solutions:
x = a−1b and y = ba−1. Some authors use the latter properties
(instead of (ii) and (iii)) in the definition of a group.

(c) There is an attractive point of view on groups, according to
which a group carries three operations: one binary operation of mul-
tiplication G × G → G : (a, b) 7→ ab, another unary operation of
inversion: G → G : a 7→ a−1, and one more “nullary” operation, with
no input but one output: e ∈ G. Then the axioms (i),(iii),(ii) are to
specify the mutual properties of the operations.

(d) The notation an is often used for a · · · a (n factors) when
n > 0, for a−1 · · · a−1 (|n| factors) when n < 0, and for e when n = 0.
One should check (by case study, as it is done for numbers in the
middle school) that aman = am+n for all integer m and n regardless
of their signs.

(e) As it is clear from our examples of symmetry groups, the group
operation is often non-commutative: ab generally speaking differs
from ba. When ab = ba for all elements a, b ∈ G, the group is called
commutative, or abelian. In an abelian group, one often calls the
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operation “addition” (rather than product), and denotes it by “+”.
Respectively, the identity element e is replaced with 0, the inverses
a−1 become −a, and the powers am become ma, where m ∈ Z and
a ∈ G.

(f) Perhaps it is useful to have examples of non-groups. The set N
of natural numbers is not a group with respect to the addition oper-
ation, because 0 isn’t there. Adjoining 0, we obtain Z+, which is still
not a group, because −a /∈ Z+ when a > 0. Adjoining the opposites,
we obtain Z, the set of all integers, which is an abelian group with
respect to the operation of addition. By the way, the operation in
this group does not originate from composition of functions (as it was
in the previous examples), which perhaps justifies the idea of defining
groups abstractly. The same is true about the modular arithmetic:
integers mod n form an abelian group Zn with respect to the oper-
ation of addition of congruence classes. Relative to multiplication, Z
is not a group, because the division is not always possible. Adjoining
fractions, we obtain the set Q of rational numbers, which still don’t
form a group with respect to multiplication, because 0 does not have
a multiplicative inverse. Removing 0, we obtain the set of non-zero
rationals, which do form an abelian group with respect to multiplica-
tion. Another non-example: reflections of the plane about the origin
do not form a group, because the composition of two reflections is
not a reflection: it reverses the orientation twice, and hence defines
a rotation of the plane.

D. The axiomatic method. An instance of it was our postu-
lating the axioms (i), (ii) , (iii) of a group and deriving consequences
such as e.g. the cancellation properties. According to a famous quote
from Bertrand Russell, The method of ’postulating’ what we want has
many advantages; they are the same as the advantages of theft over
honest toil. So, what exactly are our theft-like advantages?

We should warn the reader that the above trivial manipulations
with letters based directly on the axioms and definitions do not con-
stitute the essence of group theory. In the contrary, the same way
as in any meaningful mathematical theory, the goal is to obtain deep
and non-trivial information about the world out there (i.e. about
symmetries of various structures in the case of group theory).

Furthermore, what we called “axioms” are actually not “truths
accepted without proof”. Every concrete application of their conse-
quences must be preceded by proving the axioms in that particular
example. The advantage here consists in the shifting the “honest toil”
from directly verifying all consequences in each example to verifying
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the axioms. Thus, the axiomatic method here serves as a device
for unification of multiple concrete examples. Moreover, as we shall
see, the derivations of basic properties of algebraic operations are of-
ten more convincing when done by rearrangement of abstract letters
without any reference to the actual nature of the objects at hand.

Another motivation for the axiomatic approach comes from the
problem of group classification: In order to formulate such a prob-
lem, one needs to have an abstract description of the objects to be
classified, and a notion of equivalence between them.

E. The problem of classification. How many different groups
are out there? Well, infinitely many, because the orders (i.e. the
numbers of elements) of finite groups (e.g. Zn) can take on arbitrary
finite values. So, let’s be more specific: How many different finite
groups of a given order are there? One answer is still “infinitely
many”, e.g. because one can consider an unlimited number of copies
of a given group. On the other hand, all these copies have the same
group structure. So, the interpretation of the question should be:
How many really different groups of order n are there?

Actually this question is even hard to formulate without the no-
tion of isomorphism. A group G is called isomorphic to a group G′ if
there exists a bijection f : G → G′ which identifies the operation in
G with the operation in G′, i.e. for any x, y ∈ G, the image f(xy) of
their product xy in G coincides with the product f(x)f(y) of their
images f(x) and f(y) in G′.

This notion serves as an equivalence relation, denoted ∼=. Namely,
the identity map idG : G → G is an isomorphism of G with itself; if
f : G → G′ is an isomorphism between G and G′, then f−1 : G′ → G
is an isomorphism between G′ and G; when g : G′ → G′′ is another
isomorphism, then g ◦ f : G → G′′ is an isomorphism too. Thus,
all groups are divided into isomorphism classes. The classification
problem of, say, finite groups can be now stated as the task of finding
the number (and a list of representatives) of the isomorphism classes
of groups of a given finite order n.

We can try to start right now. Clearly, all groups of order 1
are isomorphic, as they are trivial, consisting of only the identity
element e. A group of order 2 contains also an element g 6= e, whose
square g2 = e (for g2 = g would imply g = e by cancellation). Thus
all groups of order 2 are also isomorphic (to Z2, as well as to the
multiplicative group Z× = {±1} of invertible integers). Actually a
group of order 3 is also unique up to isomorphism, but two groups of
order 4 can be non-isomorphic (see Exercises).

22



EXERCISES

12. Show that every group of order 3 is isomorphic to Z3.

13. Show that if g2 = 2 for all g ∈ G, then G is abelian.

14. Compare the following groups of order 4, and study the operation (you
may write the whole table of multiplication, if you think it helps) to find
out which of the groups are isomorphic to each other and which are not.

A. The group Z×

10
of multiplicatively invertible congruence classes mod-

ulo 10 (it consists of 1,−1, 3,−3); the operation is multiplication mod 10.

B. Z×

8
(the same, but modulo 8).

C. Z2
2, the group of 2-dimensional vectors (a, b), where a, b ∈ Z2 (i.e 0̄

or 1̄, as in computer science) with the operation of componentwise addition
modulo 2.

D. Complex numbers 1,−1, i,−i with respect to multiplication of com-
plex numbers.

E. The group of all symmetries of a rectangle (i.e. of all rigid motions of
the plane which preserve the rectangle), with the operation of composition.

F. In the group S4 of all permutations of {1, 2, 3, 4}, consider the sub-
group (denoted K4 and called the Klein subgroup) of all those permuta-
tions which preserve each of the three partitions of {1, 2, 3, 4} into pairs:
{1, 2|3, 4}, {1, 3|2, 4}, and {1, 4|2, 3}. (This description may seem convo-
luted, but the very existence of this subgroup is a remarkable fact of Nature
with serious consequences, and is worth studying).

G. In the group of all rotations of the unit cube |x|, |y|, |z| ≤ 1 (operation
= composition of rotations), consider the subgroup of all those rotations
which preserve each of the three coordinate axes. (In other words, each
rotation of the cube somehow permutes the three axes, but for some non-
trivial rotations this permutation is trivial; these rotations together with
the identity form the subgroup.)

15. Find out which of the following groups are isomorphic to each other
and which are not:

H. The group D3 of all rotations of the 3-space preserving the regular
triangular prism (by definition, its bases are parallel equilateral triangles,
and the side faces are rectangles perpendicular to the bases).

I. GL2(Z2), the group of 2 × 2-matrices whose entries are integers
mod 2, equipped with the operation of matrix multiplication, and invertible
with respect to this operation.

J. S3, the group of permutations of {1, 2, 3}.
K. The group of two generators a, b satisfying the relations a2 = e, b2 =

e, (ab)3 = e.

Remark. This is a novel way for us to describe a group, so let’s discuss it.
Consider the alphabet consisting of two letters a and b. One actually needs
to add two more letters, a−1 and b−1, but in the example K the relations
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a2 = e and b2 = e show that a and b are their own inverses. Elements
of the group are represented by words in this alphabet. The operation is
concatenation of words. The empty word represents the identity element.
The main convention is that two words represent the same group element
if they are obtained from each other by cancellations that use the given
relations and the axioms of a group. For example: (aba)(aba) = abaaba =
abba = aa = e; (babab)(aba) = b(ababab)a = ba, for in the example K, not
only a2 = b2 = e, but also ababab = e. Multiplying ababab = e by bab on
the right, we find also that aba = bab.
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Lecture 4. Homomorphisms

A. The category of groups. In modern mathematics, it is con-
sidered insufficient to describe the objects of interest; to introduce a
category of objects one also needs to specify the morphisms, i.e. the
kinds of maps between the objects which are considered legitimate.

In the category of groups, the morphisms are group homomor-
phisms. By definition they are functions f : G → G′ respecting the
group operations:

f(ab) = f(a)f(b) for all a, b ∈ G,

i.e. mapping the products in the domain group G into the products
of the corresponding elements in the codomain group G′.

In accordance with Remark (c) in section C of Lecture 3, one
should also require that a group homomorphism respects the other
two operations, i.e. f(e) = e′, and f(a−1) = f(a)−1 for all a ∈ G.
However, these two properties follow from the first one. Indeed,
f(e)e′ = f(e) = f(e2) = f(e)2 implying e′ = f(e) by cancella-
tion. Consequently, e′ = f(e) = f(aa−1) = f(a)f(a−1) showing
that f(a−1) = f(a)−1.

B. Subgroups. The notion of a homomorphism generalizes that
of isomorphism, which by definition is a bijective homomorphism.
A surjective homomorphism is also called an epimorphism, and an
injective one a monomorphism.

We have seen many monomorphisms, when in Section A of the
previous lecture we considered a series of examples of one group, G,
containing another group, H. By definition, a subgroup H ⊂ G in
a group G is a subset which is a group on its own with respect to
the same operations as in G. That is, H must contain the identity
element of G, together with every element a ∈ H contain its inverse,
and together with any two elements a, b ∈ H contain their product.
The properties (i),(ii),(iii) then hold in H simply because they hold
in G.

Here is, however, a trivial but useful observation. In order to
show that a (non-empty) subset H ⊂ G is a subgroup, instead of
checking those three properties, it suffices to check only one other:
that together with any two a, b ∈ H, their ratio ab−1 is in H. Indeed,
then for a0 ∈ H, the ratio a0a

−1
0 = e ∈ H. Next, whenever a ∈ H,

the ratio ea−1 = a−1 ∈ H. Finally, whenever a, b ∈ H, since b−1 ∈ H
too, we find that the ratio a(b−1)−1 = ab ∈ H.
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Every group monomorphism H → G can be considered as an
embedding of H as a subgroup into G. More generally, given a group
homomorphism f : G → G′, one can associate two subgroups with
it. One is the range f(G), which is a subgroup in G′. Indeed, if
f(a), f(b) are in the range, their ratio f(a)f(b)−1 = f(ab−1) is in the
range too. This subgroup is the whole of G′ exactly when f is an
epimorphism.

The other subgroup associated with f , called the kernel of f ,
and denoted ker f , is the inverse image f−1(e′) of the identity ele-
ment in G′: ker f := {a ∈ G | f(a) = e′}. It is, indeed, a sub-
group in G: if f(a) = e′ = f(b), then f(ab−1) = f(a)f(b)−1 = e′.
This subgroup consists of only the identity element exactly when
f is a monomorphism. Indeed, f(a) = f(b) is equivalent to e′ =
f(a)f(b)−1 = f(ab−1), i.e. to ab−1 ∈ ker f , which implies a = b
whenever ker f = {e}.

C. Cyclic subgroups. To every element g ∈ G, there corre-
sponds a homomorphism Z → G : n 7→ gn of the additive group
of integers to G. This is another way to say that gmgn = gm+n for
all m,n ∈ Z. The range of this homomorphism is called the cyclic
subgroup generated by g.

In general, for any subset S ⊂ G, one can introduce the sub-
group generated by S as the smallest subgroup containing S. It is the
intersection of all subgroups containing S. (Checking the fact that
intersection of subgroups is a subgroup we leave as an exercise to the
reader.) Obviously, the cyclic subgroup of g is the smallest subgroup
containing g.

The kernel of the homomorphism n 7→ gn is a subgroup in Z.
When it is {0}, the homomorphism is “mono”, and hence an isomor-
phism onto its range. In this case the cyclic group of g is isomorphic
to Z; it is an infinite cyclic group. Alternatively, when the kernel is
non-trivial, there exists the smallest positive d such that gd = e. It
follows (by long division) that any n such that gn = e must be a
multiple of d, i.e. the kernel is dZ ⊂ Z. In simple words, the powers
gn are distinct for n = 0, 1, . . . , d − 1, and then gd = g0 = e, and
the powers begin to repeat cyclically: gd+1 = g, gd+2 = g2, and so
on (and the same for negative n: g−1 = gd−1, and so on). In this
case, the cyclic group generated by g is finite, and is isomorphic to
the additive group Zd of congruence classes modulo d.
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D. Real-world homomorphisms. Here are some examples of
groups homomorphisms familiar to the readers from their previous
lives.

The exponential function satisfies ex+y = exey and thus defines a
group homomorphism from the additive group (R,+) or real numbers
to the group R×, the multiplicative group of non-zero real numbers.
The range of it consists of positive reals, and the logarithmic function
log : R×

>0 → (R,+) defines the inverse homomorphism: log(xy) =
log x+log y. Thus the additive group of all real numbers is isomorphic
to the multiplicative group of positive real numbers.

According to the Euler formula, eix = cos x+ i sinx, i.e. function
x 7→ eix defines a 2π-periodic mapping of the number line onto the
circle U1 = {z ∈ C | |z| = 1} of unit complex numbers. The circle is a
group, with the operation interpreted as the multiplication of complex
numbers, or identified (by an isomorphism!) with the group SO2 of
rotations of the plane. The periodic map is a group epimorphism of
(R,+) onto U1.

The natural projection π : Z → Zn of integers to the set of con-
gruence classes modulo n is a group homomorphism with respect to
the operations of addition (introduced in Zn in Lecture 2, and in Z
much earlier). The same is true about the map ρ : Zmn → Zm × Zn

used in the proof of Euler’s formula.

As it should be familiar from linear algebra, a map A : V 7→ W
between two vector spaces is called linear if it maps linear combina-
tions of vectors to linear combinations of their images with the same
coefficients:

A(λ~u+ µ~v) = λA~u+ µA~v.

In fact vector spaces are abelian groups with respect to the addition
operation, and a linear map is a group homomorphism: A(~u + ~v) =
A~u+A~v.

The determinant of 2× 2-matrices (and more generally, of n×n-
matrices) is multiplicative, det(AB) = (detA)(detB). Consequently,
invertible n×n-matrices have non-zero determinant, and form a group
with respect to matrix multiplication. It is denoted GLn(R) (when
the matrix entries are assumed to come from R), and called the gen-
eral linear group. The determinant function det : GLn(R) → R× =
GL1(R) is a group homomorphism. Of course, the same is true not
only for real matrices.
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E. Even and odd permutations. The last example prompts
us to recall from linear algebra the definition of n× n-determinants:

det





a11 . . . a1n
. . .

an1 . . . ann



 :=
∑

σ∈Sn

ǫ(σ)a1σ(1) · · · anσ(n).

It is the sum of n! signed elementary products, where ǫ(σ) = ±1 is

the sign of permutation σ =

(

1 . . . n
σ(1) . . . σ(n)

)

. Here is how the

sign is defined.
Introduce the following polynomial in n variables x1, . . . , xn:

∆n(x1, . . . , xn) :=
∏

i>j

(xi − xj).

For instance,

∆1 = 1, ∆2 = x2 − x1, ∆3 = (x2 − x1)(x3 − x1)(x3 − x2), . . .

A permutation σ ∈ Sn acts on any polynomial P in n variables by
permuting the variables and producing a new polynomial,

(σP )(x1, . . . , xn) := P (xσ(1), . . . , xσ(n)).

For example, for σ =

(

1 2 3
3 1 2

)

, we have

σ∆3 = (x1−x3)(x2−x3)(x2−x1) = (−1)2(x2−x1)(x3−x1)(x3−x2).

More generally, applying any σ ∈ Sn to ∆n results in ±∆n. Indeed,
permuting the indices {1, . . . , n}, the permutation σ also permutes
the set of

(

n
2

)

pairs of indices {i, j}. Thus, the
(

n
2

)

linear factors
in ∆n are permuted as each xi − xj with i > j is transformed into
xσ(i) − xσ(j). When σ(i) > σ(j), the transformed factor occurs in
the product σ∆n with the same sign as it does in ∆n, and when
σ(i) < σ(j), with the opposite sign. Thus,

σ∆n = (−1)l(σ)∆n,

where l(σ), called the length of permutation, equals the number of
pairs i > j such that σ(i) < σ(j). One could say that σ acts by a
linear transformation in the space of polynomials of degree n, and
∆n is an eigenvector of σ with the eigenvalue ǫ(σ) := (−1)l(σ).
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Proposition. ǫ : Sn → {±1} is a group homomorphism:

ǫ(σ ◦ σ′) = ǫ(σ)ǫ(σ′) for all σ, σ′ ∈ Sn.

Proof. It is tautological: σ′∆n = ǫ(σ′)∆n; applying σ to this,
we get ǫ(σ′)ǫ(σ)∆n. But by the definition of ǫ, the composition σ ◦σ′

transforms ∆n into ǫ(σ◦σ′)∆n. Thus ǫ(σ◦σ′) = ǫ(σ′)ǫ(σ). It remains
to notice that multiplication in the group {±1} is commutative.

A permutation σ is said to be even if ǫ(σ) = 1 and odd if ǫ(σ) =
−1. Thus, even permutations form the kernel of the sign homomor-
phism ǫ. It is a subgroup in Sn, denoted An, and called the alternating
group on n objects.

EXERCISES

16. Show that if ker f 6= {e}, then f is not “mono”.

17. Check that if a group homomorphism is bijective then the inverse map
is a group homomorphism too.

18. Show that intersection of (two or more) subgroups is a subgroup.

19. Prove that in a cyclic group, all subgroups are cyclic. Hint: Check
this first for subgroups in Z.

20. How many distinct cyclic subgroups are there in the group of symme-
tries of a regular triangle?

21. The symmetry group of a regular n-gon (n ≥ 3) is denoted Dn is
called the nth dihedral group. Show that |Dn| = 2n and describe all cyclic
subgroups in Dn.

22. Consider the map exp : C → C× which to a complex number z = x+iy
associates exp(z) = exeiy = ex(cos y + i sin y). Show that this an epimor-
phism of the additive group of complex numbers onto the multiplicative
group of non-zero complex numbers, but not an isomorphism between them,
and find its kernel.

23. Compute the length of the transposition τij , i < j, defined as the
permutation on {1, . . . , n} which swaps i and j: τij(i) = j, τij(j) = i,
τij(k) = k for all k 6= i, j. Derive that transpositions are odd.

24. Compute the kernel and range of the homomorphism ρ : Zmn → Zm ×
Zn when m and n are not coprime.

25. Write out the explicit formula for 2×2 and 3×3 determinants following
the definition of n × n-determinants as the sums of n! signed elementary
products.

26. Show that the action of S4 on the set of 3 partitions of {1, 2, 3, 4} into
two pairs defines a homomorphism π : S4 → S3. Prove that kerπ = K4,
and that π maps even permutations to even and odd to odd: ǫ ◦ π = ǫ.
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Lecture 5. Cosets

A. Two equivalence relations. Let H ⊂ G be a subgroup. We
say that a, b ∈ G are left-congruent modulo H, and write a H ≡
b, whenever b−1a ∈ H, and respectively say that they are right-
congruent modulo H, and write a ≡H b, whenever ab−1 ∈ H. These
are equivalence relations. Indeed, since H contains e, and is closed
with respect to inversion and multiplication, we have: a−1a = e ∈ H,
b−1a ∈ H implies a−1b = (b−1a)−1 ∈ H, and a−1b, b−1c ∈ H imply
a−1c = (a−1b)(b−1c) ∈ H for any a, b, c ∈ G. That is, H≡ is reflexive,
symmetric, and transitive, and one can similarly check this for ≡H .

Thus, the group G is partitioned into equivalence classes with re-
spect to H ≡ (≡H), which are called left H-cosets (right H-cosets
respectively). Note that the left H-coset of a ∈ G consist of
all elements of the form ah where h ∈ H, and moreover, the map
H ∋ h 7→ ah (which can be interpreted as the left translation by
a) establishes a 1-to-1 correspondence between the subgroup and the
coset. Likewise, the right translation by a, H ∋ h 7→ ha, establishes
a 1-to-1 correspondence between H and the right H-coset of a. Con-
sequently, we will often denote the cosets as aH and Ha respectively.
While the left and right H-cosets of e coincide (eH = H = He), this
is not necessarily true for a 6= e.

B

ρ−1

id    ρ ρ−1

r B r
CAr

ρ

r r

r

A

C B

A

C

Figure 3: Left (blue) and right (green) H-cosets

Example. The symmetry group of a regular triangle ABC con-
sists of three reflections rA, rB , rC in the symmetry lines passing
through the vertices (Figure 3), rotations: ρ (through 120◦ counter-
clockwise), ρ−1 (through 120◦ clockwise), and the identity id. Let H
be the cyclic group of rA. Then (as it is not hard to conclude from
the picture), the left H-cosets are: H = {id, rA}, rBH = {rB , ρ}
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(because rBrA(A) = rB(A) = C indicates the counter-clockwise ro-
tation), and rCH = {rC , ρ−1}. Likewise, the right H-cosets are:
H = {id, rA}, HrB = {rB , ρ−1}, and HrC = {rC , ρ}. Here rBH,
rCH, HrB , HrC are all distinct.

B. Lagrange’s theorem. From the fact that all parts of either
partition of a group G — into left or right H-cosets — are in bijection
with the subgroup H, we obtain:

Theorem. In a finite group, the order of any subgroup divides the
order of the whole group: if |G| < ∞, then |H|

∣

∣ |G|.
We remind that the order of a finite group is the number of ele-

ments in it. The order of the cyclic subgroup generated by an element
g ∈ G, i.e. the least positive power n such that gn = e, is called the
order of the element.

Corollary 1. The order of every element in a finite group divides
the order of the group.

Corollary 2. Every finite group of prime order is cyclic.

Indeed, the cyclic subgroup of g 6= e in a group of prime order p
must have order p and hence coincide with the whole group.

Examples. Thus, the groups of orders n < 8 are necessarily
isomorphic to Zn for n = 1, 2, 3, 5, 7. A non-cyclic group of order
4 consists of e and three more elements a, b, c, which by Corollary 2
have order 2 (i.e. a2 = b2 = c2 = e), and satisfy the property that the
product of any two of them is equal to the third one (e.g. ab = c, for
if ab = e or = a, or = b would imply b = a, b = e, a = e respectively).
This completely determines the “multiplication table” in the group,
showing that up to isomorphism, there is only one non-cyclic group
of order 4. The Klein group K4 fits the bill. For n = 6, besides Z6,
we know also the (smallest non-abelian!) group of symmetries of the
triangle (which is also isomorphic to the group S3 of permutations
of the vertices). In fact (although we don’t know this yet) up to
isomorphism, there are no other groups of order 6 other than Z6 and
S3.

Corollary 3. In a finite group G, g|G| = e for all g ∈ G.

Indeed, if n is the order of g, then |G| = nl for some l, and gn = e.
Thus gnl = el = e.

Corollary 4. (Fermat’s Little Theorem). If p is prime and a is
not divisible by p, then ap−1 ≡ 1 mod p.
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This is Corollary 3 applied to the group Z×
p of non-zero con-

gruence classes of integers mod p with respect to the operation of
multiplication. Generalizing this argument, consider the group Z×

n of
all invertible congruence classes of integers modulo n, i.e. the classes
of integers a coprime with n. The number of such classes is denoted
ϕ(n) and is known as Euler’s function of n. E.g. for a prime p,
ϕ(p) = p− 1.

Corollary 5 (Euler’s theorem). For a and n coprime, aϕ(n) ≡ 1
mod n.

C. Normal subgroups. A subgroup H ⊂ G is called normal if
its left cosets coincide with its right cosets: aH = Ha for all a ∈ G,
or in other words, if the equivalence relations ≡H and H ≡ coincide.
Equivalently, H is normal if and only if it stays invariant under the
transformations of conjugation by any elements of G. Namely, the
conjugation by a ∈ G on G is defined as g 7→ aga−1 (and is a bijection
since the conjugation by a−1 is its inverse). The condition aH = Ha
means that for every h ∈ H there exist h′, h′′ ∈ H such that ah = h′a
and ha = ah′′. In other words, aha−1 = h′ ∈ H and h = ah′′a−1 ∈
aHa−1 for all h ∈ H, i.e. H = aHa−1. Conversely, aHa−1 = H
means that for every h ∈ H, both h′ := aha−1 ∈ H and h = ah′′a−1

for some h′′ ∈ H. These are respectively equivalent to ah ∈ Ha and
ha ∈ aH, showing that aH = Ha.

Examples. (1) In an abelian group, all subgroups are normal.
(2) In the symmetry group of a regular triangle, the rotations

{id, ρ, ρ−1} form a normal subgroup (check this!)
(3) The kernel ker f of a group homomorphism f : G → G′ is

a normal subgroup in G. Indeed, if f(h) = e′ then f(aha−1) =
f(a)f(h)f(a−1) = f(a)e′f(a)−1 = e′ for all a ∈ G.

The last example turns out to be universal due to the following

Theorem. Let H ⊂ G be a normal subgroup, G/H denote the set
of H-cosets, and π : G → G/H be the natural projection to the set
of equivalence classes defined by the equivalence relation ≡H . There
exists a unique group structure on G/H such that π is the group
homomorphism. Besides, π(G) = G/H and ker π = H.

Proof. The homomorphism requirement says: π(ab) = π(a)π(b)
for all a, b ∈ G. Reading it from right to left, we conclude that the
only way to define the product of H-cosets so that the requirement
holds is to pick their representatives a and b, multiply them in G, and
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then take the H-coset of the product. This confirms the uniqueness
claim. To establish the existence, we need to make sure that the result
does not depend on the choice of the representatives. So, let a′ = ha,
h ∈ H, be another representative from Ha. Then a′b = hab ∈ Hab.
Now let b′ = hb be another representative from Hb. Then ab′ =
ahb = (aha−1)ab ∈ Hab — this time because H is normal implying
that aha−1 ∈ H whenever h ∈ H. Thus, the product operation in
G/H is well-defined.

The group-theoretic properties of the operation on H-cosets hold
true because they do so for the representatives. Indeed, the associa-
tivity (π(a)π(b))π(c) = π(a)(π(b)π(c)) holds because (ab)c and a(bc)
are legitimate representatives of the left-hand-side and right-hand-
side respectively. Taking e′ := π(e), we find that π(a)e′ = π(a) =
e′π(a) since ae = a = ea, i.e. e′ does serve as the identity element in
G/H. In particular, ker π = π−1(e′) = H (the H-coset of e). Further-
more, aa−1 = e = a−1a implies π(a)π(a−1) = e′ = π(a−1)π(a) show-
ing that π(a−1) qualifies for the inverse of π(a). Finally π(G) = G/H
because the projection of a set to the set of the equivalence classes of
an equivalence relation is always surjective.

The group G/H constructed in the theorem is called the quotient
group (or sometimes the factor group) of the group G by its normal
subgroup H. The finite cyclic groups Zn := Z/nZ are the familiar
examples of this construction.

Corollary (The Homomorphism Theorem). Every group homo-
morphism f : G → G′ decomposes as the projection of the domain
group onto its quotient by the kernel of the homomorphism, followed
by an isomorphism between the quotient group and the range of the ho-
momorphism, followed by the inclusion of the range into the codomain

group: G
π−→ G/ ker f

∼=−→ f(G) →֒ G′.

Proof. Indeed, f(a) = f(b) in the range of f if and only if
ab−1 ∈ ker f , i.e. whenever a and b lie in the same congruence class
relative to the (normal!) subgroup ker f . This establishes a bijection
i : G/ ker f → f(G) such that i(π(a)) = f(a) for all a ∈ G. It is
a group homomorphism because i(π(a)π(b)) = i(π(ab)) = f(ab) =
f(a)f(b), where the first equality is due to the construction of the
product in the quotient group, the second one is the defining property
of i, and the last one holds because f is a group homomorphism.
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The significance of this (frankly — tautological) result lies in the
complete description it provides for all homomorphic images of a
given group in intrinsic terms of the group itself: it suffices to ex-
amine G/H for all normal subgroups H ⊂ G. For instance, every
subgroup in Z is (normal and), if non-zero, consist of all multiples
of the smallest positive element in it (check this!) Consequently, all
homomorphic images of Z are isomorphic to Z/dZ for some d ≥ 0.
(In fact we have already established this in our discussion of cyclic
subgroups.) Another example: the symmetry group of a regular tri-
angle has order 6. By Lagrange’s theorem, a proper subgroup in it
must have order 1, 2, or 3, and hence be cyclic. Cyclic subgroups of
the reflections (such as {id, rA}) are not normal, leaving the cyclic
group of ρ±1 the only non-trivial normal subgroup. Thus, every ho-
momorphism of this group to any group G′ either maps the whole
group to e′, or is an embedding (with the kernel {id}), or maps the
rotation subgroup H = {id, ρ, ρ−1} to e′ and all reflections rA, rb, rC
(which form the other H-coset) to any element of order 2 in G′.

EXERCISES

27. Show that left and right translations, La : g 7→ ag and Ra : g 7→ ga, by
a on a group G are bijections.

28. Prove that the inversion operation g 7→ g−1 on G transforms left H-
cosets to right ones, and vice versa.

29. Prove that if the number of left H-cosets is finite, then the number of
right H-cosets is also finite and is equal to the number of left H-cosets.
(This number is called the index of the subgroup H in the group G, and is
often denoted by [G : H ].)

30. Symmetries of a group G form a group denoted Aut(G) and called the
automorphism group of G. By definition it consists of automorphisms of
G, i.e. isomorphisms of G with itself, with the operation of composition of
such isomorphisms. Prove that Aut(K4) ∼= S3.

31. Prove that 3003000 − 1 is divisible by 1001.

32. Check that the subgroups {e} ⊂ G and G ⊂ G (called trivial subgroups)
are normal and describe the corresponding quotient groups.

33. Prove that the conjugation g 7→ aga−1 by a ∈ G is an automorphism
of G. (Such automorphisms are called interior.) Show that interior auto-
morphisms form a subgroup in Aut(G), and that it is normal.

34. Show that the subgroups {id, rA}, {id, rB}, {id, rC} in the symmetry
group of the triangle are transformed into each other by conjugations.

35. Prove that any subgroup of index 2 is normal.
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36. (a) Find all normal subgroups of the dihedral group Dn. (b) Describe
up to isomorphism all homomorphic images of Dn.

37. In a group G, consider the commutator subgroup [G,G] which by defi-
nition is the smallest subgroup containing all commutators aba−1b−1 of el-
ements a, b ∈ G. Prove that [G,G] is normal, and that G/[G,G] is abelian.
Show that, moreover, every homomorphism from G to an abelian group
contains [G,G] in its kernel.

38. Let K ⊂ G be a normal subgroup, and H be a subgroup in G containing
K. Show that: (a) K is normal in H , (b) the natural projection π : G →
G/K maps H to a subgroup isomorphic to H/K, and (c) H/K is normal
in G/K whenever H is normal in G.
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Lecture 6. Rotations of the cube

A. The order. We have introduced a number of abstract group-
theoretic concepts, such as subgroups, cosets, conjugations, homo-
morphisms, kernels, normal subgroups, quotients, etc., and here we
are going to explore one non-trivial example in a hope to get an
intuitive grip on some of those abstractions.

120

90

180

Figure 4: Three types of rotation axes

To begin with, the cube is a very symmetric solid. By merely
rotating the cube one can transform any of its 8 vertices into any other
vertex, any of its 6 faces into any other face, and any of its 12 edges
into any other edge. With respect to the operation of composition of
rotations, all rotations of the cube (together with the identity) form a
group — the rotation group of the cube — which we will denote here
by G. It consists of all those symmetries of the Euclidean 3-space
which preserve the orientation (i.e. map left gloves into left ones)
and, well, preserve the standard unit cube |x|, |y|, |z| ≤ 1. In Figure
4, the three types of axes of rotation are described. The dashed line
shown in green passes through the centers of a pair of opposite faces;
the cube can be rotated through 90, 180, or 270 (the same as −90)
degrees about such an axis. The blue dashed line passes through
the midpoints of a pair of opposite edges and serves as the axis of
a 180 degree rotation. The dashed red line passes through a pair of
opposite vertices and serves as the axis of rotations through ±120
degrees. Our first concern is the order |G| of the group.
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So far we have apprehended: 4 × 2 = 8 rotations through ±120◦

about 4 axes of the red type, 6 rotations thought 180◦ about the axes
of the blue type, and 3 × 3 = 9 rotations about each of the 3 axes
of the green type through 90◦, 180◦, 270◦ for each. Together with
the identity transformation, this gives 1 + 8 + 6 + 9 = 24 different
elements of G. Have we missed anything? Let us use the following
three different ways to check.

Clearly, transformations from G preserving the vertex v marked
red in Figure 4 form a subgroup Hv of order 3 — the cyclic subgroup
of the 120◦ rotation. Let a be a transformation from G mapping v
to another vertex v′. Then the elements of the left Hv-coset aHv all
map v to v′. Indeed, if h ∈ Hv, then h(v) = v, and ah(v) = a(v) = v′.
Conversely, if a′(v) = v′, then a′ = a(a−1a′) where a−1a′ maps v to v′

and then back to v, i.e. a−1a′ ∈ Hv, and a′ ∈ aH. Thus, the number
of left Hv-cosets is equal to the number 8 of the vertices of the cube,
and |G| = 8× |Hv| = 8× 3 = 24.

Likewise, the subgroup He ⊂ G of transformations preserving the
edge whose center is marked blue in Figure 4 has order 2 (it is the
cyclic subgroup of the 180◦ rotation). Thus |G| = # edges × |He| =
12× 2 = 24.

Yet another check: the subgroup Hf preserving the face whose
center is marked green is the cyclic group of the 90◦ rotation. Thus
|G| = # faces × |Hf | = 6× 4 = 24.

By the way, we have defined Hv as the subgroup fixing the vertex
v, but all vertices of the cube are alike. How is Hv related to the sub-
group Hv′ fixing v′? If a(v) = v′ and h(v) = v, then the composition
aha−1 ∈ Hv′ since it first maps v′ to v by a−1, then keeps v fixed
by h, and then maps it back to v′. Thus Hv′ = aHva

−1 is subgroup
conjugated to Hv, i.e. Hv′ is obtained from Hv by the interior auto-
morphism G → G : g 7→ aga−1, the conjugation by a. In particular,
the subgroup Hv is not normal (for it does not fix all the vertices of
the cube — only some of them).

B. S4. In fact we know another group of order 24, the group
of all permutations on the set {1, 2, 3, 4} of four objects. How can
one show that two groups which happen to have the same order are
not isomorphic? An isomorphism is not just a bijection, but one
which respects the group operations. So, if exists, it would transform
subgroups to subgroups, cyclic groups to cyclic groups, elements of
order m to elements of order m, conjugated elements (or subgroups)
to conjugated elements (resp. subgroups), etc. So, let’s compare the
orders of elements in G with those in S4.
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In G, there are 4×2 = 8 elements of order 3 (the ±120◦ rotations),
3× 2 = 6 elements of order 4 (±90◦ rotations), 3+ 6 = 9 elements of
order 2 (180◦ rotations about 3 green axes and 6 blue axes), and (as
in any group) 1 element of order 1 — the identity.

A permutation σ : {1, . . . , n} → {1, . . . , n} can be described by

the table

(

1 . . . n
σ(1) . . . σ(n)

)

of its values (bottom line) on the

inputs (top line). However, properties of a particular permutation
become more transparent from the so-called cycle decomposition of
it. Namely, σ maps 1 to σ(1), σ(1) to σ(σ(1)), and so on, until certain
iteration of σ maps 1 back to 1. (It will surely do that because it
cannot map two different objects to the same one.) Setting aside the
objects involved in the first cycle and starting with a new object one
obtains another cycle, and so on, ending with a partition of the whole
set {1, . . . , n} into non-overlapping cycles cyclically permuted by σ

within each of them. For example

(

1 2 3 4 5 6 7 8 9
3 4 1 5 9 8 6 7 2

)

decomposes as 1 7→ 3 7→ 1, 2 7→ 4 7→ 5 7→ 9 7→ 2, 6 7→ 8 7→ 7 7→ 6.
This result can be recorded as the product σ = (1 3)(2 4 5 9)(6 8 7)
of cycles (i1 i2 . . . il) which are permutations mapping i1 to i2, i2
to i3, etc. with the understanding that il is mapped back to i1, and
all objects other than iα stay fixed. The ordering of the cycles in
the product (of the three in this example) is irrelevant since non-
overlapping cycles commute. The order of σ, as it not hard to check,
equals the least common multiple of the lengths of the cycles in the
cycle decomposition of σ (i.e. 12 in this example).

6

2 5

78

4 9

31

Figure 5: Young diagrams

On the left of Figure 5, a Young tableau representing our per-
mutation σ is shown. The format of the tableau (called a Young
diagram) represents the partition of 9 as the sum 4+3+2 of positive
integers, encoded by the numbers of the cells in each row, which are
non-increasing (4 ≥ 3 ≥ 2) going from top to bottom. The tableau is
obtained by filling in the cells of the diagram by integers 1, 2, . . . , 9.
Of course, the fillings obtained from each other by cyclically shifting
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the entries in a row represent the same permutation. (Also, if rows
of the same length were present, reordering them would not change
the permutation σ represented by the tableau.)

On the right of Figure 5, the Young diagrams of all 5 partitions
of the number 4 are represented — from left to right: 4 = 3 + 1 =
2+ 2 = 2+ 1+ 1 = 1+ 1+ 1+ 1. Thus, the orders of elements in S4

(i.e. the least common multiples of the terms of the partitions) are
respectively: 4, 3, 2, 2, and 1.

How many permutations are there of each order? The row of
4 cells can be filled in by the numbers 1, 2, 3, 4 in 4! = 24 different
ways. However, cyclic shifts of the numbers in the row doesn’t change
the permutation, i.e. the number of permutations of order 4 equals
24/4 = 6. The next diagram 3 + 1 (the same as any other in fact)
can also be turned into a tableau in 4! different ways, but up to 3
cyclic shifts in the top row this yields 24/3 = 8 permutations of order
3. The partition 2 + 2 contributes 24/(2 · 2 · 2) = 3 to the number of
permutations of order 2 (where the last factor 2 in the denominator
offsets the overcounting by the 2! reorderings of the two equal rows
of the diagram). The partition 2 + 1 + 1 contributes 24/(2 · 2!) = 6
more permutations of order 2. The rightmost diagram represents
the identity permutation regardless of its filling by the numbers, and
does it 24/4! = 1 times. Thus, the numbers of elements of the orders
4, 3, 2, 1 in S4 are the same as in G: 6, 8, 9 and 1 respectively.

Let us try to refine this information by introducing conjugacy
classes. Namely, when in a group b = gag−1 for some g, let’s call
b conjugated to a (b ∼ a). It is an equivalence relation (check this!)
and thus partitions the group into conjugacy classes.

What happens with the young tableau representing permutation
a when it is replaced with permutation b = gag−1? Here g is also a
permutation on {1, . . . , n}, and all it does is renaming the n objects,
i.e. replacing each name i ∈ {1, . . . , n} with g(i). Thus, if we rename
all entries in the Young tableau of a according to the renaming scheme
g, we obtain the Young tableau for b — but the Young diagram, i.e.
the partition of n into the lengths of cycles in the cycle decomposition
remains the same! The converse is also true: two fillings of the same
Young diagram define a renaming scheme g. Thus, S4 consists of 5
conjugacy classes of sizes 6, 8, 3, 6, 1 whose elements have the orders
4, 3, 2, 2, 1 respectively.

What about the rotation group G? The 6 rotations through ±90◦

around the green axes form one conjugacy class. Indeed, to the face
marked with the green center in Figure 4, we can associate a particu-
lar 90◦ rotation about the shown green axis by applying the left-hand

40



rule. But the cube has 6 faces, and each one can be rotated into each
other, showing that all such rotations are conjugated to each other.
The 8 rotations through 120◦ are similarly related to the 8 vertices
of the cube, and hence form a single conjugacy class. The 3 rotations
through 180◦ about the green axes are conjugated by the rotations
of the cube permuting the axes, and the same applies to the 6 ro-
tations through 180◦ about the blue axes, which are conjugated by
the rotations interchanging the edges of the cube. Together with
the conjugacy class of the identity transformation, we have 5 conju-
gacy classes of sizes 6, 8, 3, 6, 1 consisting of elements of the orders
4, 3, 2, 2, 1 respectively.

Perhaps it is time to abandon the working hypothesis that G is
not isomorphic to S4, and conjecture the opposite.

C. G ∼= S4. How does one prove that two groups are isomorphic?
The group structure is fully encoded in the function G × G → G of
multiplication, and some authors advocate for the use of “multiplica-
tions tables”. In our case it will be a square grid of size 24× 24 with
the names of group elements labeling rows and columns of it and the
product (row element) · (column element) written inside each cell of
the grid. Comparing two such tables — one for G and one for S4 —
one should not be surprised if they won’t look the same: this does
not mean that the groups aren’t isomorphic. To check whether they
are not one “only” needs to try the tables obtained from the one for
G by each of the 24! ≈ 6 ·1023 permutations applied via simultaneous
renaming of the rows, the columns, and the entries of the grid. If
none of the 24! tables thus obtained coincide with the one for S4,
then the groups are not isomorphic; if for one of the permutations
the two grids agree, then — voila! — an isomorphism is found. The
futility of this approach is also underscored by the fact that it suits
for comparing arbitrary functions G × G → G, and thereby ignores
the group-theoretic nature of the problem.

In reality, if two meaningful groups happen to be isomorphic,
there usually is a meaningful reason for this. In our case, S4 is the
group of all symmetries of a set of 4 objects. To have a candidate
for an isomorphism G → S4 it suffices to find 4 objects associated
with the cube which are permuted by the cube’s symmetries. It
should not be too hard to guess now that the set of 4 diagonals
qualifies. Thus, we obtain a group homomorphism f : G → S4 which
to a rotation g of the cube associates the permutation f(g) of the 4
diagonals which is induced by g. When two rotations are composed,
the permutation f(g1g2) their composition induces is obtained by the
consecutive application of the permutations f(g2) followed by f(g1),
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i.e. f(g1)f(g2) if the functional notation (where the input of functions
stays on the right of the function’s name) is used. This is why f is
a group homomorphism. To check whether it is an isomorphism, it
suffices to verify that ker f = {id}. Indeed, is that’s the case, then f
is 1-to-1, and hence is onto, because the sets G and S4 have the same
number of elements.

To this end, let g be a rotation of the cube which leaves each of the
4 diagonals in its place, and hence merely preserves or reverses the
direction of each of them. We claim that the sequence of four signs
± thus obtained is in fact +,+,+,+, i.e. each vertex of the cube
remains fixed, and thus g = id. Indeed, any three of the diagonals can
be taken for (non-Cartesian) coordinate axes, and in this coordinate
system the linear transformation defined by g will have a diagonal
matrix with the corresponding three signs ±1 on the diagonal. But
their product is the determinant of g, i.e. +1, since rotations have
positive determinants (in fact always = 1), the same as the identity
transformation. This implies that each of the four signs equals the
product of all four, and thus must be +, for otherwise the product of
each three would be negative.

D. Normal subgroups in S4. Inspired by the above success,
let’s try to construct other homomorphisms from G and from S4 in
order to find their normal subgroups.

Besides acting on the set of 4 pairs of opposite vertices (diagonals)
of the cube, the group G also acts on the 6 pairs of opposite edges,
and on the 3 pairs of opposite faces. The former action defines a
homomorphism G → S6 which in all likelihood is injective (since
|S6| = 6! = 720 > 24) and has trivial kernel. However, the latter
defines a non-trivial homomorphism h : G → S3. Its kernel consists of
all those rotations which preserve all the three pairs of opposite faces.
Besides the identity map, only the three 180◦ rotations about the
green axes qualify. Thus, ker h has order 4. By the homomorphism
theorem, h identifies the quotient group G/ ker h of order 24/4 = 6
with the entire S3 (since |S3| = 3! = 6 as well). We conclude that
there should exist an epimorphism h̃ : S4 → S3 with the kernel of
order 4 (and such that h̃ ◦ f = h). What is it?

Note that the 180◦ rotation about the green axis in Figure 4 per-
mutes the four diagonals of the cube (which we can label by 1, 2, 3, 4
following the vertices around the face marked by the green center)
as the product of two 2-cycles (13)(24). In the left Figure 6, this
permutation corresponds to the central symmetry of the rectangle.
The 180◦ rotations about the lines of centers of the other two pairs of
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faces of the cube permute the diagonals as (12)(34) and (14)(23), i.e.
as the symmetries of the rectangle about the dashed midlines. To-
gether with the identity permutation, these three form the subgroup
in S4 preserving three partitions of the vertices of the rectangle into
two pairs: connected by the long edges, by the short edges, and by
the diagonals. The group S4 of all permutations of the vertices of
the rectangle permutes the three partitions of {1, 2, 3, 4} into pairs,
which therefore defines the homomorphism S4 → S3. The kernel of
it is the Klein group K4 consisting of the permutations induced by
the symmetries of the rectangle.

3

1 2

4

Figure 6: Toward normal subgroups in S4.

Reversing the logic of this argument, note that we know of the epi-
morphism ǫ : S4 → S2 = {±1} defined by the parity of permutations.
Its kernel, the alternating group A4, consists of 12 even permuta-
tions. We obtain therefore the epimorphism ǫ ◦ f : G → S2. What is
the kernel of it as a subgroup in the rotation group G? In the right
Figure 6, two regular tetrahedra inscribed into the cube are shown:
one blue and one red, whose edges are the diagonals in the faces of
the cube, and whose vertices split those of the cube, each picking
one from every pair of the opposite ones. Rotations of the cube act
on the set of the two tetrahedra, thereby defining an epimorphism
G → S2. The rotations preserving each tetrahedron form a normal
subgroup in G, consisting of 12 rotations of each tetrahedron (and
inducing even permutations of each tetrahedron’s 4 vertices).

In the next lecture, we will prove that with one notable excep-
tion each symmetric group Sn contains only one non-trivial normal
subgroup — the alternating group An, the exception being the Klein
subgroup K4 ⊂ S4.
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EXERCISES

39. Use linear algebra to prove that every orientation-preserving orthogonal
transformation of the Euclidean 3-space (i.e. every element of the group
we denoted SO3 in Lecture 3) is a rotation through some angle about some
axis passing through the origin.

40. Show that none of cyclic subgroups in G (the rotation group of the
cube) is normal.

41. Prove that the order of a permutation on a finite set is equal to the least
common multiple of the lengths of the cycles in the cycle decomposition of
the permutation.

42. Check that conjugacy is an equivalence relation.

43. Prove that orthogonal transformations of the Euclidean 3 space have
determinant ±1, and that rotations have the same determinant +1 as the
identity transformation.

44. Check that the action of G on the set of 6 pairs of opposite edges of
the cube defines an embedding of G into S6.

45. Show that the group of Euclidean symmetries of a regular tetrahedron
in 3-space can be identified with the group S4 of arbitrary permutations
of the tetrahedron’s vertices, and that even permutations correspond to
orientation-preserving transformations.

46. Define a homomorphism S4 → S3 by associating to a symmetry of
a regular tetrahedron the permutation it induces on the set of 3 pairs of
opposite edges of the tetrahedron, and show that the kernel of this homo-
morphism is the Klein subgroup.

47. Identify all non-cyclic subgroups in S4, and find out whether different
non-cyclic subgroups of the same order are (a) isomorphic and (b) conju-
gated to each other.
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Lecture 7. Symmetric and alternating groups

A. Conjugacy classes in Sn. Since a normal subgroup is one
invariant under conjugations, it must be a disjoint union of whole
conjugacy classes of the group. So, let us collect here what we know
about conjugacy classes in Sn.

Each conjugacy class corresponds to a partition n = k1 + · · ·+ kr
of n into positive summands, which we may assume non-decreasing,
and visualize the partition by a Young diagram with r rows of lengths
k1 ≥ · · · ≥ kr > 0. Permutations from a given conjugacy class are
obtained by turning the Young diagram into a Young tableau by
filling somehow the n cells of the diagram with the numbers 1, . . . , n:
the corresponding permutation shifts cyclically the elements in each
row of the tableau. We leave it to the reader as an exercise to show
that the number of elements in the conjugacy class represented by a
partition with l1 ones, l2 twos, l3 threes, etc. is equal to

n!
∏

s s
lsls!

, where n = l1 + 2l2 + 3l3 + · · ·

For example, the conjugacy class of a cycle (1 2 . . . k) corresponds to
the partition n = k+1+· · ·+1 (n−k ones) and contains n!/k (n−k)!
permutations — n! ways of filling the tableau (which has the shape
of the letter Γ) divided by k cyclic shifts of the entries in the top row
and by (n− k)! permutations of the remaining entries written in the
“leg” of the diagram.

Note that conjugated permutations have the same parity:

ǫ(λσλ−1) = ǫ(λ)ǫ(σ)ǫ(λ)−1 = ǫ(σ).

In other words, the parity of a permutation of n objects does not
depend on how the objects are called, but is an intrinsic property
of the permutation’s structure. How does the parity of σ express in
terms of the partition of n, i.e. in terms of the cycle structure of
σ? The transposition (12) is odd. Indeed, the sign of the polyno-
mial ∆n =

∏

i<j(xj − xi) is reversed by interchanging x1 with x2
because this turns the factor x2 − x1 into x1 − x2 and preserves the
rest. Therefore all transpositions (i j) are odd. Furthermore, a cycle
(1 2 . . . k) can be written as the composition (1 k) . . . (1 3)(1 2) of
k−1 transpositions and is therefore even whenever k is odd. We con-
clude that a permutation σ consisting of cycles of lengths k1, . . . , kr
is even if and only if the number of its cycles of even lengths is even.
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Proposition. Every even permutation can be represented as a
product of 3-cycles (i j k).

Proof. Note that a 3-cycle (i j k) (it is assumed that i, j, k
are distinct) is even, and its inverse is a 3-cycle too. We prove the
proposition by induction on the number of objects fixed by a given
even permutation σ. Simply speaking, we will compose σ with a
3-cycle such that the number of objects fixed by the permutation
increases. When it becomes n, the permutation turns into id, and
hence σ becomes the product of the 3-cycle’s inverses.

Suppose the cycle decomposition of σ contains a cycle of length
k > 2, e.g. (1 2 . . . k). Then (2 1 3)(1 2 . . . k) = (1)(2)(3 4 . . . k)
acquires two more fixed points (1 and 2) when k > 3, and three more
when k = 3. Thus, the problem is reduced to the case when all non-
trivial cycles of σ have lengths 2. Since σ is even, the number of such
cycles must be even, and they can be split into (non-overlapping)
pairs, such as e.g. (1 2)(3 4). But (2 1 3)(1 2)(3 4) = (1)(2 3 4)
which also has an extra fixed point. This finishes the proof.

Corollary. The alternating group An is generated by 3-cycles,
and for n ≥ 5 by the conjugacy class of (1 2)(3 4).

Proof. The first statement is a rephrasing of the proposition, and
the second follows from (i j k) = (i j)(j k) = (i j)(l m) (l m)(j k).

B. Normal subgroups in Sn. Recall that any group G has two
trivial subgroups, G and {e}, which are both normal. We know that
An is a non-trivial normal subgroup in Sn for n ≥ 3. It is the only
normal subgroup in S3 (where all non-trivial subgroups must be cyclic
and all have been looked at under the disguise of the symmetries of a
regular triangle) while in S4 there is also the Klein normal subgroup
K4. From the proof of the following theorem it will be also clear that
S4 has no other normal subgroups.

Theorem. For n ≥ 5, the only non-trivial normal subgroup in Sn

is the alternating group An.

Proof. We will show that for n ≥ 5, a non-trivial normal sub-
group H ⊂ Sn contains An; since the order |An| = |Sn|/2 is the
largest proper divisor of |Sn|, the equality H = An would follow.

Pick σ ∈ H other than id. It cannot be a transposition, because
then H contains all transpositions, and they generate the whole of
Sn. If it is a 3-cycle, then H contains all 3-cycles, and hence contains
An. Otherwise either σ is a cycle of length ≥ 4 or it contains at least
two distinct cycles of lengths ≥ 2. In either case there exist i 6= j
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such that σ(i) and σ(j) are distinct from both i and j (and of course
from each other). Then σ−1(i) and σ−1(j) are also distinct from both
i and j.

Consider now the expression στσ−1τ−1 (known as the commuta-
tor of σ and τ and lying in H for any τ since H is normal), where we
take τ = (i j) = τ−1. We claim that the commutator is the product
(σ(i) σ(j))(i j) of two disjoint 2-cycles.

Indeed, when k 6= i, j, σ(i), σ(j), we have τ−1(k) = k, σ−1(k) 6=
i, j (for otherwise k = σ(i) or σ(j)), hence τ(σ−1(k)) = σ−1(k), which
is mapped by σ back to k. Thus, the commutator fixes all objects
except i, j, σ(i), σ(j), which are indeed mapped by the commutator
as described. Namely,

i
(i j)7−→ j

σ−1

7−→ σ−1(j)
(i j)7−→ σ−1(j)

σ7−→ j,

σ(i)
(i j)7−→ σ(i)

σ−1

7−→ i
(i j)7−→ j

σ7−→ σ(j),

and similarly for j and σ(j).
Thus, H contains a whole conjugacy class which according to the

above corollary generates the entire An when n ≥ 5.

Remark. Note that for n = 4 we can only conclude that together
with this commutator, H contains K4. Therefore H projects to a
proper normal subgroup H/K4 in the quotient group S4/K4 = S3.
When H/K4 = A3, we have H = A4. When H/K4 = {id} we have
H = K4. Thus, the only non-trivial normal subgroups in S4 are A4

and K4.

C. The simplicity theorem. A group is called simple if it has
no non-trivial normal subgroups (and hence all homomorphisms of it
are either constant or injective). The program of classification up to
isomorphism of all finite simple groups was completed by 2004 thanks
to heroic several-decades-long efforts of many mathematicians, and
is considered the crowning achievement of the theory of groups. The
answer is rather complicated, as it involves several infinite series (of
simple groups of the orders growing indefinitely within each series)
plus 27 “sporadic groups” of which the largest one has the order com-
parable, people say, to the number of particles in the Universe. On
the other end: it turns out that the smallest non-abelian simple group
(for simple abelian groups, see Exercises) is the alternating group A5,
which has order 60. It begins one of the infinite series of finite simple
groups.

Theorem. The alternating groups An are simple for n ≥ 5.
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Remark. This result does not follow directly from our description
of normal subgroups in Sn because a normal subgroup H ⊂ An is
not a priori guaranteed to remain normal in Sn. Most of the usual
proofs of this theorem consist in showing that H contains 3-cycles,
and hence all of them, since for n ≥ 5 all 3-cycles turn out to be
conjugated not only in Sn but also in An. Instead, we show below
that for all n a normal subgroup in An must remain normal in Sn.

Proof. Let us argue ad absurdum: assume that H is a normal
subgroup in An which is not normal in Sn, and arrive at a contra-
diction. Thus, λHλ−1 = H for all even permutations λ, while for
some odd permutation λ0, H ′ := λ0Hλ−1

0 6= H is another normal
subgroup in An. Then in fact, since compositions of odd permuta-
tions are even, the same subgroup H ′ results from conjugating H by
every odd λ, and moreover, conjugating H ′ by an odd λ returns H.
The intersection H ∩H ′ must be invariant under conjugations by all
elements of Sn (the odd ones interchange H and H ′ and the even ones
preserve each), and is therefore a normal subgroup in Sn. But there
is no such subgroup in Sn — unless H ∩ H ′ = {id} (since even for
n = 4, K4, which has prime index 3 in A4, is contained in only one
larger subgroup, A4). This verdict already looks suspicious, because
this means that for every σ ∈ H, its conjugacy class in Sn must be
split evenly between H and H ′ into two conjugacy classes of An —
one of σ (in H) and one of λ0σλ

−1
0 (in H ′). So, our current goal is

to figure out how conjugacy classes of Sn decompose into conjugacy
classes of An.

Consider two permutations σ, σ′ ∈ An with the same cycle struc-
ture represented by a partition n = k1 + · · · + kr. They can be de-
scribed by two fillings (Young tableaux) of the same Young diagram.
The comparison of the tableaux reveals a renaming scheme g of the
objects 1, . . . , n, which conjugates σ into σ′. If g is itself an even per-
mutation then σ′ = gσg−1 in An. Suppose then that g is odd. Take,
however, one of the rows in the Young diagram and cyclically shift
the entries of one of the two tableaux (say, the one for σ′). This does
not change the permutation σ′ but changes the renaming scheme g
by composing it with the cyclic shift. If the length of the row is even,
then the cyclic shift is odd, and the new renaming scheme conjugating
σ into σ′ becomes even. So, assume that the Young diagram has no
rows of even length, but has two rows of equal odd length. Swapping
the rows of the Young tableau for σ′ (e.g. replacing (1 2 3)(4 5 6)
with (4 5 6)(1 2 3)) we find a new renaming scheme obtained from g
by composing it with the product ((1 4)(2 5)(3 6) in our example) of
an odd number of transpositions. This also changes the parity of the
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renaming scheme without changing the permutations σ and σ′. We
conclude that a conjugacy class in Sn of even permutations remains a
single conjugacy class in An unless the terms kα of the corresponding
partition n = k1 + · · · + kr are all odd and distinct. The converse is
also true, but we won’t use it and leave it as an exercise to the reader.

Thus, every non-identity permutation σ in the normal subgroup
H ⊂ An which is not normal in Sn must have its cycle decomposition
consisting of cycles of odd distinct lengths. But this is already very
suspicious. For, if σ has two such cycles of length kα > kβ > 1, then
σkβ 6= id also lies in H but has at least kβ > 1 cycles of length 1
— a contradiction! Thus, σ must have only one cycle of odd length
k > 1. Moreover, k must be prime, for if it factors non-trivially as
ml, then σm ∈ H has m cycles of length l — a contradiction! The
only remaining possibilities therefore are: (i) n = p an odd prime,
and σ has one cycle of length p, or (ii) n = p+1, and σ has one cycle
of length p and one of length 1.

In case (i), the conjugacy class of σ in Sn consists of p!/p =
(p − 1)! elements which are split evenly between H and H ′, and so
the subgroup H has order 1+(p−1)!/2 (where 1 stands for the identity
element). In case (ii), the conjugacy class consists of (p + 1)!/p =
(p+1) (p− 1)! elements, resulting in |H| = 1+ (p+1) (p− 1)!/2. In
either case, |H| must be divisible by the order p of σ, which leads to a
contradiction. Namely, according to Wilson’s theorem, (p− 1)! ≡ −1
mod p implying 2|H| ≡ 1 6= 0 mod p.

D. Wilson’s theorem. This is a famous fact of elementary
number theory:

Theorem. For any odd prime p, (p − 1)! ≡ −1 mod p.

Proof. In any finite abelian group G, the product
∏

x∈G x of all
group elements is equal to the product

∏

x: x2=id x of elements equal
to their inverses. This is because all other element come in pairs x 6=
x−1 which cancel in the product. Applying this to the multiplicative
group Z×

p , we find (p−1)! ≡ (+1)·(−1) ≡ −1 mod p. It is important
here that p is prime and consequently all non-zero congruence classes
in Zp lie in the group Z×

p . Therefore x2 − 1 = (x− 1)(x + 1) = 0 in
Zp only when x = 1 or x = −1.

Remark. Note that modulo 8, all the four elements ±1,±3 of Z×
8

are roots of x2 − 1. For example, (3 − 1)(3 + 1) = 2 · 4 ≡ 0 mod 8.
Here the product of non-zero classes 2̄ and 4̄ is zero, making them
zero divisors, an event impossible modulo a prime.
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EXERCISES

48. Find the smallest n for which the symmetric group Sn contains a cyclic
subgroup of order 60.

49. Show that the number of elements in the conjugacy class of Sn repre-
sented by a partition with l1 ones, l2 twos, l3 threes, etc. (n = 1l1 + 2l2 +
3l3 + · · · ) is equal to n!/

∏

s s
ls ls!.

50. Prove that Sn is (a) generated by transpositions, (b) generated by n−1
transpositions (1 2), (2 3), . . . , (n− 1 n).

51. Prove that a non-trivial simple finite abelian group is isomorphic to
one of Zp with prime p.

52. Show that 3-cycles do form a single conjugacy class in An for n > 4,
but do not for n = 3 and 4.

53. Given a permutation σ with l1 cycles of length 1, l2 cycles of length 2,
etc., describe permutations commuting with σ, and show that their total
number is equal to 1l1 l1!2

l2 l2!3
l3 l3! · · ·

54. Prove that a conjugacy class in Sn of an even permutation remains a
single conjugacy class in An if and only if there exists an odd permutation
commuting with it.

55. Prove that a conjugacy class of even permutations whose cycle lengths
kα (n = k1 + · · · + kr) are all odd and distinct splits into two equal size
conjugacy classes of An.

56. Provide another ending to the proof of the simplicity theorem by ex-
ploiting the fact that |H | must divide the order of the alternating group,
p!/2 in case (i) and (p+ 1)!/2 in case (ii).

57. Prove that for n > 1, the commutator subgroup [Sn, Sn] coincides with
An, and for n > 4, [An, An] = An. Identify the commutator subgroups in
A3 and A4.

50



Lecture 8. Group actions

A. Two definitions. Our informal introduction to groups was fo-
cused on subgroups G ⊂ S(X) of the group of all permutations of
a set (and preserving a certain structure on it). Here is how that
situation generalizes to the abstract setting.

One says that a group G acts on a set X if a homomorphism G →
S(X) (not necessarily injective) of G to the group of all permutations
on the set X is given.

Equivalently, an action of G on X is defined by a map G×X → X
(whose value on a pair (g, x) ∈ G×X is denoted gx ∈ X) such that
ex = x for all x ∈ X, and for all g1, g2 ∈ G and x ∈ X the following
“associativity property” holds: (g1g2)x = g1(g2x).

The last condition means that the maps gi : X → X defined by
x 7→ gix, when composed in the order “g2 first, g1 last” yield the map
x 7→ (g1g2)x corresponding to the product g1g2 in G. In particular,
since the map x 7→ ex defined by the unit element is id ∈ S(X),
the maps X → X defined by g and g−1 turn out to be inverse to
each other, implying that each map x 7→ gx is a permutation on X.
Thus, the action in the second sense indeed defines a homomorphism
G → S(X). Conversely, given such a homomorphism, π, the action
map (g, x) → gx is defined by applying the permutation π(g) to x.
This shows that the two definitions are equivalent indeed.

Not unlike Moliére’s character who didn’t know he was always
speaking prose, we have been actually using group actions all the
time without calling them so. Rotations of the cube act on the sets
of the cube’s vertices, faces, edges, rotation axes (altogether or of
each color separately). Any group acts on itself by conjugations, left
translations, right translations.

In fact there is a subtlety in the last statement. Strictly speaking
the notion of action we have just introduced is that of a left action.
A right action of G on X is defined by a function G × X → X :
(g, x) 7→ xg satisfying x(g1g2) = (xg1)g2 for all g1, g2 ∈ G and x ∈ X.
The difference from the left action is not just that group elements are
written on the right set elements, but that the maps defined by g1 and
g2 are composed in the opposite order: g1 first, g2 last. In particular,
left translations Lg : x 7→ gx on a group G form a left action of G on
itself: Lg1g2(x) = Lg1(Lg2(x)), while right translations Rg : x 7→ xg
form a right action: Rg1g2(x) = Rg2(Rg1(x)). Respectively, R is not
a homomorphism from G to S(G) but an anti-homomorphism: it
changes the order of multiplication. So, which actions are better,
right or left? Here is a way out of this rather perplexing situation.
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With each group G one can associate the opposite group Gop which
coincides with G as a set, but is equipped with the new product
◦: g1 ◦ g2 := g2g1. The identity map from G to Gop is an anti-
isomorphism, but the inversion map g 7→ g−1 defines an isomorphism
between G and Gop: (g1g2)

−1 = g−1
2 g−1

1 = g−1
1 ◦ g−1

2 . Consequently,
given a right action of G on a set X, one turns it into a left action
by composing the homomorphism Gop → S(X) (defining the right

action of G) with the inversion isomorphism G
∼=−→ Gop, i.e. simply

speaking, by making g act as g−1 was supposed to: (g, x) 7→ xg−1.

Conversely, the composition Gop
∼=−→ G → S(X) turns a left action

of G on X into the corresponding right action. The rule of thumb
here is that one should stick once and for all to only one type of
actions — either only left, or only right — and turn all “wrong” type
of actions, should they occur, into the correct type by the inversion
construction. In what follows we will stick to left actions.

Cayley’s theorem. Every group is isomorphic to a subgroup of
a permutation group.

Proof. The homomorphism of G to the group S(G) of permu-
tations on itself defined by left translations: G ∋ g 7→ Lg ∈ S(G)
(where Lg(x) := gx) is injective, since g 6= e defines a non-identity
permutation (Lg(e) = g 6= e) and hence doesn’t lie in kerL.

This tautological result has no practical significance, but it shows
that every group operation can be interpreted as the composition of
mappings.

B. Orbits. An action of a group G on a set X partitions the set
into equivalence class called orbits of the action: two elements lie in
the same orbit if they can be transformed into each other by the action
of the group elements. More formally: x ≡ y if there exists g ∈ G
such that y = gx. It is immediate to check that this is an equivalence
relation, and that the orbit of x is Gx: the image of G×{x} ⊂ G×X
under the map G × X → X defining the action. For example, the
action of the rotation group G of the cube on the set of all its axes of
rotation has three orbits: the 4 red axes, 3 green axes, and 6 blue axes
(Figure 4). Sometimes the whole set X is one orbit, in which case the
action is called transitive. For instance, the rotation group G of the
cube acts transitively on the set of its 8 vertices (as well as on the sets
of its 6 faces, and of its 12 edges). Obviously each orbit is a smallest
subset in X invariant under the action (that is, no proper non-empty
subset of it is invariant), and the action, when restricted to the orbit,
becomes transitive. Our current goal is to understand the connection
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between the structure of a group and that of its transitive action, or
equivalently — its action on a particular orbit. The earlier analysis
of the way the rotation group of the cube acts on the set of 8 vertices
should serve us as an illuminating example.

Let x0 ∈ X be any point. The elements of G preserving this point
(i.e. G-symmetries of the additional structure on X introduced by
picking this point) form a subgroup H := {g ∈ G | gx0 = x0} called
the stabilizer of x0 under the given action, and often denoted Gx0

.
Let x1 be another point in the same orbit, i.e. x1 = g1x0 for some
g1 ∈ G. Then the whole left H-coset of g1 maps x0 to the same
x1: (g1h)x0 = g1(hx0) = g1x0 = x1 whenever h ∈ H. Conversely,
when g′1x0 = x1, we have g′1 = g1h, where the composition h = g−1

1 g′1
maps x0 to x1 and then back to x0, i.e. lies in H. We conclude
that elements of the orbit Gx0 are in bijection with the set of left
H-cosets.

We will denote now the set of left H-cosets by G/H even when
H is not normal. Note that left translations by G on itself induce
a left action of G on G/H. Indeed, when g2 = gg1, Lg transforms
g1H to gg1H = g2H. (With right translations Rg−1 , the same would
be true for right H-cosets.) We claim that under the above bijection
between G/H and the orbit Gx0, the action of G on the orbit is
identified with the action by left translations on G/H. Indeed, the
coset g2H obtained by Lg from the coset g1H corresponds to x2 :=
g2x0 = (gg1)x0 = g(g1x0) = gx1 which is therefore obtained by the
action of g on x1 = g1x0 corresponding to the coset g1H.

The fact that a map f : Y → X between two sets carrying G-
actions respects the two actions, i.e. that f(gy) = g(f(y)) for all
y ∈ Y and all g ∈ G, is expressed by saying that ”f commutes
with the actions”, or that f is G-equivariant. We have established
the following analogue of the homomorphism theorem; it describes
transitive actions in intrinsic terms of the group.

The orbit-stabilizer theorem. The map g 7→ gx0 from a
group G to the orbit Gx0 of x0 ∈ X under a left G-action factors
through the projection π : G → G/Gx0

to the set of left cosets of the
stabilizer subgroup of x0 and defines an equivariant bijection between
the set of left cosets (with the action induced by left translations on

the group) and the orbit: G
π−→ G/Gx0

∼=−→ Gx0 ⊂ X.

In particular, when the group is finite, |Gx0| = |G|/|Gx0
|, and

hence the number of elements in any orbit of a finite group divides
the order of the group.
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What if the element we first pick in the orbit is not x0 but x1 =
g1x0? The stabilizer Gx1

= {g ∈ G | gx1 = x1} is in fact a subgroup
conjugated to Gx0

by means of g1: Gx1
= g1Gx0

g−1
1 .

Indeed, mapping x1 to x0 by g−1
1 , then applying any transfor-

mation fixing x0, and then mapping it back to x1 by g1, we obtain
a transformation fixing x1, i.e. g1Gx0

g−1
1 ⊂ Gx1

. By the same to-
ken, since x0 = g−1

1 x1, we find that g−1
1 Gx1

g1 ⊂ Gx0
and hence

Gx1
⊂ g1Gx0

g−1
1 .

C. Cauchy’s counting principle. It is an orbit-counting for-
mula, which is also known as Cauchy–Frobenius’ formula, Burnside’s
counting theorem, Burnside’s lemma, or “the lemma which is not
Burnside’s”.

Theorem. The number of orbits of a finite group action on a
finite set is equal to the average number of fixed points of the group’s
elements:

|X/G| = 1

|G|
∑

g∈G

|Xg|,

where Xg = {x ∈ X | gx = x} denotes the set of points in X fixed
by a given g ∈ G, and X/G denotes the set of G-orbits in X.

Example. The symmetric group Sn acts on the set of n objects
with one orbit, and the formula suggests that the expected number
of fixed points of a random permutation equals 1. This sounds right,
since each of the n objects is fixed by (n−1)! permutations, i.e. with
the frequency (n− 1)!/n! = 1/n.

Proof. The numerator
∑

g |Xg| represents the total number of
pairs (g, x) ∈ G×X such that gx = x. It is additive with respect to
X: if the set is a disjoint union of X1 and X2, then |Xg| = |Xg

1 |+|Xg
2 |.

Thus, it suffices to prove the formula separately for each orbit. So,
let’s assume that G acts on X transitively. Then, according to the
orbit-stabilizer theorem, |X| = |G/Gx| = |G|/|Gx| for each x ∈ X.
The condition gx = x means that g ∈ Gx. Therefore the number of
pairs (g, x) such that gx = x is equal to |X| · |Gx| = |G|. Divided
by |G|, it becomes equal indeed to the number 1 of the orbits in the
transitive case.

As a typical application of Cauchy’s counting principle, let’s solve
the following
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Problem. A necklace is formed by 17 identically shaped symmet-
ric beads of black or white color strung on a circular string. How
many different necklaces can be formed this way?

Solution. Denote by X the set of all 217 = 131 072 different
colorings of 17 beads into 2 colors. Two colorings represent indistin-
guishable necklaces if one can be obtained from the other by cyclic
shifts or by combining such shifts with flipping the necklace over.
The group of these operations is therefore the dihedral group D17 of
symmetries of a regular 17-gon. It consists of 17 rotations through
the angles 2πk/17, k = 0, . . . , 16, and 17 reflections about the sym-
metry lines of the 17-gon (Figure 7). The group D17 acts on the set
X of all colorings, the indistinguishable colorings form one orbit, and
our problem consists in counting such orbits.

One can try to enumerate the orbits directly, but the orbits don’t
have the same size, and the process would seem rather unsystematic
and tiresome if not outright hopeless. Here is when Cauchy’s counting
principle comes handy, for we only need to count the number of g-
symmetric colorings for each of the 34 group elements g ∈ D17.

Figure 7: A reflection of the 17-gon.

Of course, all 217 colorings are symmetric with respect to the
identity transformation. Since 17 is a prime number, a coloring can-
not be invariant under a non-trivial rotation of the 17-gon unless it
is constant: all beads black or all beads white. For a coloring to

55



be invariant under one of the 17 reflections (Figure 7), the beads in
each of the 8 symmetric pairs must have the same color (while the
remaining 17-th bead can have any color), i.e. number of fixed points
of each reflection is 29. According to the orbit-counting formula,

|X/D17| =
217 + 16 · 2 + 17 · 29

34
=

(217 − 2) + 17 · (2 + 29)

34

=
216 − 1

17
+ 1 + 28.

By the way, 216− 1 = (28 +1)(24 +1)(24 − 1) = 257 · 17 · 15 is indeed
divisible by 17 (which also follows from Fermat’s Little Theorem).
Thus the number of different necklaces |X/D17| = 257 · 16 = 4112.

EXERCISES

58. Give an example showing that the requirement ex = x for all x ∈ X in
the second definition of group actions does not follow from the “associativ-
ity” axiom.

59. Show that right actions of G on X are represented by homomorphisms
Gop → S(X).

60. Show that two left actions of G on itself: one defined by left translations
Lg, the other by right translations Rg−1 , commute.

61. By definition, the center Z(G) of a group G consists of all elements
commuting with all elements of the group. Show that Z(G) is an abelian
normal subgroup. Give an example of a group with Z(G) = {e}. What
does Z(G) = G mean for G?

62. Let g ∈ G be a non-central element. Show that its centralizer Z(g) :=
{x ∈ G | xg = gx} is a proper subgroup in G which contains Z(G) as a
proper subgroup (i.e. G ! Z(g) ! Z(G)).

63. For a finite group G, prove the class formula: |G| = |Z(G)|+∑

α |Cα|,
where Cα are distinct conjugacy classes of non-central elements.

64. Prove that a group of order p2, where p is prime, is abelian. Hint: use
the class formula to show that the order of the center is divisible by p.

65. Show that the number of conjugacy classes in a finite group is equal to
the average order of the centralizers of the group’s elements.

66. A 3-coloring of the cube is obtained by painting each of its faces into one
of the three colors R, G, B. Two 3-colorings are called equivalent if they
can be matched by rotating the cubes. Find the number of equivalence
classes of such 3-colorings. (Try both approaches, direct and via Cauchy’s
principle.)
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Lecture 9. Sylow’s theorems

Let p be a prime integer. By a p-subgroup of a group G (or simply p-
group) one means (sub)group of order pr. Due to Lagrange’s theorem,
in a finite group of order |G| = pr11 · · · prk where pi are distinct primes,
non-trivial p-subgroups can exists only if p is one of pi. A Sylow p-
subgroup of a finite group G is defined as a subgroup of maximal
order pr dividing |G|, i.e. r = ri when p = pi. The parts of the
following (quite non-trivial) result are known as Sylow’s 1st, 2nd,
and 3rd theorems.

Theorem. (1) A finite group G contains p-subgroups of every
order pr dividing |G|. In particular Sylow p-subgroups of G exist.

(2) Every p-subgroup of G is conjugated to a subgroup in a given
Sylow p-subgroup. In particular, all Sylow p-subgroups are conjugated
in G, and are therefore isomorphic to each other.

(3) The number of Sylow p-subgroups in G is a divisor of |G|
which is congruent to 1 modulo p.

Example. The group G of rotations of the cube has order |G| =
3 ·23. It contains 4(≡ 1 mod 3) conjugated cyclic Sylow 3-subgroups
generated by rotations about one of the cube’s 4 diagonals. It must
contain 3 conjugated Sylow 2-subgroups of order 8, since their number
is an odd divisor of 24, and isn’t 1 (because G ∼= S4 doesn’t have
normal subgroups of order 8). To identify these Sylow 2-subgroups,
think of the cube as a square prism (e.g. by squeezing the cube
between one of its 3 pairs of opposite faces). Rotational symmetries
of a square prism are the same as those of a square in space (which
can be rotated in its plane around its center, or flipped — through
rotation in space — around one of its 4 symmetry axes). Thus,
rotations of the prism form a dihedral group D4 of order 8. Each of
these 3 Sylow 2-subgroups contains two 90◦ rotations which generate
one (of 3 in G) cyclic subgroups of order 4. All other non-identity
elements of D4 have order 2. The flips about the square’s diagonals
generate a subgroup in D4 isomorphic to K4 (one of 3 conjugated
ones in G), while the flips about the square’s midlines generate yet
another K4 — the Klein subgroup of G ∼= S4 (which is normal and
hence common to all the three D4). Finally, order 2 subgroups in
G are generated by 180◦ rotations of two types: 6 about the lines
passing through the centers of opposite edges (in each D4 they are
represented by the flips about the square’s diagonals), and 3 about the
lines passing through the centers of opposite faces (they correspond
to the remaining 3 order 2 elements in each D4).
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Many different proofs of Sylow’s theorems are known, but most
seem to be based on clever choices of sets on which G acts.

To motivate our choice, note that the partition of a group G into
left cosets of a subgroup S stays invariant under left translations
(that’s why G acts on G/S: a left translate of a coset is a coset).
But the converse is also true: any partition of G invariant under left
translations is the partition into left cosets of a subgroup. Namely,
take S to be the part of the partition containing e. For any h ∈ S, the
left translate h−1S by h−1 intersects S (since h−1h = e) and hence
must coincide with S. This shows that ratios h−1h′ of elements from
S lie in S, i.e. that S is a subgroup. All other parts of the partition,
being left translates of S, are left S-cosets indeed.

Thus, given a group G of order |G| = prm where p is prime, we
introduce the set P of all partitions of G into m disjoint subsets of
cardinality pr. The action of G on itself by left translations induces
an action of G on the set P of such partitions. A fixed point of this
action, i.e. x ∈ P such that gx = x for all g ∈ G, represents the
partition of G into left cosets of subgroups S of order pr. To prove
Sylow’s 1st theorem, we establish the existence of such fixed points
by induction on m.

When m = 1 (i.e. G is a p-group) there is only one partition,
which is the fixed point, so the base of induction holds. Our induction
hypothesis says that all groups of order prm′ with m′ < m contain
p-subgroups of order pr.

According to the orbit-stabilizer theorem, an orbit O of the G-
action on P has cardinality |O| = pkn for some k ≤ r and some
n|m, with the stabilizer Gx of each partition x ∈ O having order
pr−k(m/n) respectively. One of the following 3 possibilities holds:
(i) |O| = 1, i.e. O is a fixed point, (ii) |Gx| = prm′ with m′ < m,
in which case G contains subgroups of order pr because Gx ⊂ G
contains them by the induction hypothesis, or (iii) p divides |O|. To
show that the last possibility cannot hold for all orbits, we will prove
that |P| is not divisible by p.

First, let’s find the cardinality of P:

|P| = (prm)!

(pr!)mm!
.

Indeed, thinking of a partition of G as represented by a Young tableau
of m rows of length pr filled with elements of G, we find that two
tableaux represent the same partition if and only if they are obtained
by (pr)! permutations in each row, m! permutations of the rows, or
any combination of these transformations.
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Next, we claim that the multiplicity op(n!) of the factor p in the
prime factorization of n! is

op(n!) = ⌊n
p
⌋+ ⌊ n

p2
⌋+ ⌊ n

p3
⌋+ · · · =

∞
∑

k=1

⌊ n
pk

⌋,

where ⌊x⌋ is the floor function, or integer part of x defined as the
largest integer not exceeding x. Indeed, write the factors 1, 2, . . . , n
of n! in a row in this order, and mark those which are divisible by p:
p, 2p, 3p, . . . . They occur every p positions of the row, so the total
number of such positions not exceeding n equals ⌊n/p⌋. But every
p2 positions the factor is divisible by an extra p, and this happens
⌊n/p2⌋ times, and so on. Of course, the sum is actually finite, because
the fractions n/pk eventually become < 1.

Now let us apply this formula to the factorials in the numerator
and denominator of our formula for |P|:

op((p
rm)!) = pr−1m+ pr−2m+ · · · +m+

∞
∑

k=1

⌊m
pk

⌋ ,

op(p
r!) = pr−1 + pr−2 + · · · + 1 , op(m!) =

∞
∑

k=1

⌊m
pk

⌋ .

We see that the multiplicity of p in the prime factorization of the nu-
merator and denominator coincide, and consequently the ratio (which
is in fact an integer) is not divisible by p at all — as promised.

To prove Sylow’s 2nd theorem, consider the set G/S of left cosets
of a given Sylow p-subgroup. It carries the transitive action of G in-
duced by left translations, but we will restrict this action to elements
of a p-subgroup H ⊂ G. This action of H has no reason to be tran-
sitive, and moreover, we claim that it has fixed points. Indeed, the
cardinalities of all H-orbits other than fixed points, being non-trivial
divisors of |H|, are divisible by p, but |G/S| is not. So, let the coset
g0S be a fixed point of H. This means that for every h ∈ H there
is s ∈ S such that hg0e = g0s, i.e. that g−1

0 hg0 ∈ S. Thus, g−1
0

conjugates H into a subgroup of S.

To prove Sylow’s 3rd theorem, consider the set (which we will
denote by X) of all Sylow p-subgroups of G. The action of G on
itself by conjugations induces an action of G on X, which is transitive
by Sylow’s 2nd theorem, implying that |X| divides |G|. We will
restrict this action to elements of a particular Sylow subgroup S.
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The subgroup S considered as a point of X is a fixed point (since it
is invariant under its own conjugations). We claim that it is the only
fixed point. Since orbits of S other than fixed points have cardinalities
divisible by p, this would imply that |X| ≡ 1 mod p as required.

To this end, consider any Sylow p-subgroup H, and introduce the
normalizer subgroup N(H). By definition, the normalizer (of any
subset in G) consists of all group elements which leave the subset
invariant under conjugation: N(H) := {g ∈ G | gHg−1 = H}. In
other words, this is the stabilizer (and therefore a subgroup in G) of H
considered as a point of X. Obviously N(H) contains H as a normal
subgroup. So, we can consider the projection π : N(H) → N(H)/H
to the quotient group. The latter has order not divisible by p. Indeed,
the order |N(H)| is a divisor of |G| = prm, where m is coprime to p,
but |H| = pr, and so |N(H)/H| = |N(H)|/|H| must be a divisor of
m.

Suppose now that H is a fixed point of the action of S on X, i.e.
conjugations by elements of S leave H invariant. Then S ⊂ N(H).
The range π(S) of the projection homomorphism π|S : S → π(S) ⊂
N(H)/H must have an order dividing the order pr of S on the one
hand, and the coprime to p order of the quotient group N(H)/H on
the other. Therefore, |π(S)| = 1, i.e. S ⊂ ker π = H. Thus, indeed
H = S is the only Sylow p-subgroup fixed under conjugations by S.

EXERCISES

67. Construct a non-abelian group of order 8 not isomorphic to D4.

68. Identify all Sylow subgroups in the alternating group A4 and in the
dihedral group D6.

69. Prove that a non-abelian group of order 2p where p is an odd prime is
isomorphic to the dihedral group Dp.

70. Show that Sylow subgroups in a group of order 15 are normal, and
derive from this that the group is cyclic.

71. The same for any group of order pq where p < q are primes such that
q 6≡ 1 mod p.

72. For |G| = p2q where p, q are distinct primes, show that G has a non-
trivial normal subgroup.

73. Construct a Sylow p-subgroup in the symmetric group Spr inductively
on r. Hint: Place pr objects into the Young diagram of p rows of length
pr−1 each and combine permutations from p copies of a Sylow p-subgroup
of Spr−1 , acting on the objects inside each row separately, with the group
∼= Zp cyclically permuting the rows.
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Lecture 10. Finitely generated abelian groups

A. Direct sums and products. Given two groups, G′ and G′′, form
their Cartesian product G′ ×G′′ = {(g′, g′′) | g′ ∈ G′, g′′ ∈ G′′}, and
equip it with a groups structure using the component-wise operations:
(g′1, g

′′
1 )(g

′
2, g

′′
2 ) := (g′1g

′
2, g

′′
1g

′′
2 ), (g′, g′′)−1 := ((g′)−1, (g′′)−1), e :=

(e′, e′′). The resulting group is denoted G′ × G′′ and is called the
direct product of G′ and G′′, or G′ ⊕G′′ in which case it is called the
direct sum of the two groups. Clearly, the projections

π′ : G′×G′′ → G′, (g′, g′′) 7→ g′, π′′ : G′×G′′ → G′′, (g′, g′′) 7→ g′′,

are group homomorphisms with the kernels

ker π′ = {(e′, g′′) | g′′ ∈ G′′}, and ker π′′ = {(g′, e′′) | g′ ∈ G′}

canonically identified with G′′ and G′ respectively. The groups G′ =
ker π′′ and G′′ = kerπ′ considered as normal subgroups in G′ ×
G′′ intersect trivially (i.e. at (e′, e′′) only) and commute with each
other (i.e. (g′, e′′)(e′, g′′) = (e′, g′′)(g′, e′′)). They are complemen-
tary in the sense that each (g′, g′′) is uniquely written as the product
(g′, e′′)(e′, g′′) of an element from G′ followed by an element from G′′.

Conversely, if a group G contains two commuting complemen-
tary (in the above sense) normal subgroups G′, G′′ ⊂ G, then G
is canonically identified with G′ × G′′. Namely, the compositions

G′ →֒ G π′

−→ G/G′′ and G′′ →֒ G π′′

−→ G/G′, where π′ and π′′ are
the projections to the corresponding quotient groups, identify these
quotient groups with G′ and G′′ respectively. Indeed, writing g ∈ G
as g′g′′ with g′ ∈ G′ and g′′ ∈ G′′ we find that the cosets gG′′ and
g′G′′ coincide, showing that π′|G′ is surjective; on the other hand,
g′ ∈ ker π′|G′ only if g′ ∈ G′ ∩ G′′ = {e}, implying that π′|G′ is
injective (and similarly for π′′|G′′). Therefore the homomorphism
G → G′ ×G′′ defined by g 7→ (π′(g), π′′(g)) and mapping g = g′g′′ to
(g′, g′′) (in terms of the previous identifications) is bijective. In this
case one says that G is represented internally as the direct product
of its subgroups.

Example. Integers modulo mn can be further reduced modulo
m and modulo n. This defines two homomorphisms π′ : Zmn → Zm

and π′′ : Zmn → Zn, and therefore a homomorphism (π′, π′′) : Zmn →
Zm⊕Zn. The kernel of it consists of the congruence classes mod mn
of those integers x ∈ Z which are divisible by both m and n, i.e.
divisible by the least common multiple of m and n. The kernel is
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trivial if and only if the least common multiple is mn, i.e. when m and
n are coprime. In this case, our homomorphism is injective, and hence
surjective, since the orders of its domain and codomain coincide. We
conclude that G.C.D.(m,n) = 1 implies Zmn

∼= Zm ⊕ Zn.

In the example, we used the notation ⊕ instead of × only because
the operation in the groups Zn is induced by addition of integers, with
0̄ as the unit element. However, when one generalizes the notion of
direct product from the case of two to the case of many factors Gα, it
becomes really different from the notion of direct sum whenever the
collection of the factors is infinite. By definition the direct product
∏

αGα, where α runs a certain index set I, consists of arbitrary
collections (gα)α∈I of elements gα ∈ Gα, while the direct sum

⊕

α Gα

consists of such collections where, however, all but finitely many gα =
eα. Thus,

⊕

αGα is a subgroup in
∏

αGα (since the operations in
both groups are component-wise: (gα)(g̃α) := (gαg̃α)), both contain
each Gα0

as a normal subgroup (consisting of collections (gα) such
that gα = eα unless α = α0), and both map onto each Gα0

(by
πα : (gα) 7→ gα0

). However, the operations of direct product and
direct sum have different “categorical” properties.

A collection fα : G → Gα of group homomorphisms from some
group G to each Gα defines a homomorphism f = (fα) : G → ∏

α Gα

to the direct product: f(g) := (fα(g))α∈I , such that its composition
with each projection πα returns the original homomorphism: πα◦f =
fα for all α ∈ I. Conversely, a homomorphism f : G → ∏

α Gα defines
a collection fα := πα ◦ f : G → Gα of homomorphism from G to each
Gα. One expresses this situation abstractly by saying that in the
category of groups, the product group together with the projections
πα :

∏

αGα → Gα is a “universally repelling object” for collections
(→ Gα)α∈I of homomorphism to the factors.

In contrast, the direct sum plays the role of a “universally at-
tracting object” for collections (Gα →)α∈I of homomorphisms from
the summands to abelian groups. Namely, a collection of homomor-
phisms fα : Gα → A to some abelian group A defines a single ho-
momorphism f :

⊕

α Gα → A such that its composition f ◦ iα with
each canonical embeddings iα : Gα →֒ ⊕

α Gα coincides with fα. The
homomorphism f is defined by f(gα) :=

∑

α fα(gα), where the sum-
mation (in the abelian group A whose operation is expressed by “+”)
makes sense because all but finitely many summands fα(eα) = 0.

In what follows, only finite direct sums (or products) will occur.
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B. Free abelian groups. A group is called finitely generated
if it is generated by finitely many elements, or in other words, if
some finite subset of it is not contained in any proper subgroup. The
additive group Q of rational numbers is not finitely generated because
any finite collection of fractions has a common denominator, d, and
is therefore contained in the proper infinite cyclic subgroup 1

d
Z. Our

goal is to classify up to isomorphism all finitely generated abelian
groups. In particular, we will see that they all are isomorphic to the
direct sums of finitely many (finite or infinite) cyclic groups.

For an abelian group A, will use “+” for the operation, and so
what used to be the unit element is now 0, the inverse of a becomes
−a, and the kth power of a is now denoted ka, where we also bor-
row the notation from linear algebra by using bold-faced letters for
elements of the group. Thus, A being generated by a1, . . . ,an means
that every x ∈ A can be written (possibly non-uniquely) as a “linear
combination” x = k1a1 + · · ·+ knan with some coefficients ki ∈ Z.

Let A be an abelian group, and F (A) ⊂ A denote the subset of
all its elements of finite order:

F (A) := {a ∈ A | there exists k > 0 such that ka = 0}.

It is a subgroup (known as the torsion subgroup of A): if ka = 0
and lb = 0, then kl(a − b) = 0. Then the quotient group A/F (A)
is free in the sense that it has no non-zero elements of finite order.
Indeed, if kā = 0̄ in A/F (A) for some k > 0 (here we denote by ā
the coset a+F considered as en element of the quotient group) then
ka ∈ F (A) has some finite order l > 0, and hence kla = 0 in A, i.e.
a ∈ F (A) and ā = 0̄.

When A is generated by finitely many ai ∈ A the quotient group
is still generated by their cosets āi and therefore is still finitely gen-
erated.

Theorem. A finitely generated free abelian group is isomorphic to
Zn for some n ≥ 0 — the direct sum Z ⊕ · · · ⊕ Z of finitely many
copies of the infinite cyclic group Z.

Proof. The group Zn, which can be considered as the lattice of in-
teger points in Rn, is generated by the basis vectors e1 = (1, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1), and moreover, each ele-
ment x = (x1, . . . , xn) ∈ Zn is uniquely written as their linear com-
bination: x = x1e1 + · · · + xnen with integer coefficients. We need
to show that any finitely generated free abelian group also has such
a basis.
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Let a1, . . . ,an be a finite collection of elements generating the
group with as few elements as possible. We claim that they form a
required basis, i.e. for every element x of the group, the coefficients
(x1, . . . , xn) of the integer linear combination x = x1a1 + · · ·+ xnan
are uniquely determined by x. This indeed identifies the group with
Zn: if y = y1a1 + · · · + ynan, then x + y = (x1 + y1)a1 + · · · +
(xn + yn)an, i.e. the sum x + y of two vectors is expressed by the
component-wise addition of the strings of their coordinates in Zn:
(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

To justify our claim, assume that the same x can be expressed
in two different ways as a linear combination of a1, . . . ,an, and sub-
tracting one from the other obtain 0 = k1a1 + · · · + knan, where at
least one of ki (for instance k1) is non-zero. In linear algebra over R
(or even over Q) this would already lead to a contradiction, because
we could divide the relation by k1, express a1 as a linear combina-
tion of a2, . . . ,an, and thereby furnish a collection of generators with
fewer than n elements. However, to remain within our abelian group,
we must avoid fractions. So, we use the division of integers with
remainders, and apply a version of the Euclidean algorithm.

Namely, without loss of generality we may assume that among
non-zero coefficients ki in the relation k1a1+· · ·+knan = 0, a smallest
in the absolute value is k1, and even may assume that k1 > 0. Writing
k2 = q2k1 + r2, . . . , kn = qnk1 + rn where the remainders ri satisfy
0 ≤ ri < k1, we form a new set of n generators by replacing a1 with
a′1 := a1+ q2a2 + · · ·+ qnan, and keeping the rest of ai. The relation
between the generators now reads: k1a′1+r2a2+· · ·+rnan = 0. Since
our abelian group is free of non-zero elements of finite order, not all
ri = 0; otherwise ka′1 = 0 implying a′1 = 0 and making a2, . . . ,an
a set of n − 1 generators in conflict with our choice of n. Thus, we
can pick a smallest of all non-zero ri (let it be r2) and iterate the
whole process, noting however that 0 < r2 < k1. Since in each next
iteration the smallest positive coefficient is smaller than the previous
one, we eventually arrive at a relation l1b1+ · · ·+ lnbn = 0 (between
new generators) with l1 = 1. This would allow us to eliminate b1

(as in linear algebra) from the set of generators, leading again to a
contradiction with our choice of n.

Remark. The number n, being characterized as the smallest num-
ber of generators of Zn, does not depend on the choice of the genera-
tors, and is called the rank of the lattice. The rank rkA of a finitely
generated abelian group A is defined as the rank of A/F (A).

Corollary. If A is finitely generated, then A ∼= F (A)⊕ ZrkA.
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Proof. In our discussion of cyclic groups, we have noticed that
a homomorphism from Z to any group is determined by the image
of the generator 1 ∈ Z, and moreover, since no multiple 1 is 0 in Z,
the image can be any element of the codomain group. Now from to
the universality property of direct sums we conclude that a homo-
morphism from Zn to any abelian group is determined by the images
of the generators f(ei) which could be arbitrary. Simply speaking,
the rule f(x1e1 + · · ·+ xnen) := x1f(e1) + · · ·+ xnf(en) defines the
homomorphism uniquely and doesn’t lead to contradictions because
there are no non-trivial relation between the generators ei in Zn.

Following this lead, we pick in A some elements a1, . . . ,an such
that their cosets āi in A/F (A) form a basis in A/F (A) ∼= Zn and
define f : A/F (A) → A by f(āi) := ai. This homomorphism is a
right inverse to the projection π : A → A/F (A), i.e. π ◦ f is the
identity on A/F (A). Indeed, by our very choice this is true on the
generators of A/F (A). Therefore f is injective, i.e. an isomorphism
onto its range, which is therefore isomorphic to Zn and hence contains
no elements of finite order: F (A) ∩ f(A/F (A))) = {0}. Besides, for
every a ∈ A, a − f(π(a)) ∈ kerπ = F (A), and hence a can be
decomposed into the sum of one element from F (A) and one from
the range of f . (This decomposition is unique exactly because the
intersection of the two subgroups is trivial.) Thus, A is the internal
direct sum of these subgroups.

Corollary. The torsion subgroup F (A) of a finitely generated
abelian group is finite.

Proof. It is generated by the images of the finitely many gener-
ators of A under the projection A ∼= F (A)⊕ (A/F (A)) → F (A). To
prove that a torsion group F with finitely many generators f1, . . . , fn
is finite, take N > 0 such that N fi = 0 for all i (e.g. take N to
be the product of the orders of fi). The homomorphism Zn → F
defined by (x1, . . . , xn) 7→ x1f1 + · · · + xnfn is surjective. All vectors
with components divisible by N lie in the kernel of it, and therefore
the homomorphism factors through the component-wise projection
Zn → (Z/NZ)n, showing that |F | ≤ Nn.

EXERCISES

74. Compute explicitly the map Z6 → Z3 ⊕ Z2 of the further reduction
mod 3 and mod 2 of congruence classes mod 6. Repeat this for Z8 7→
Z4 ⊕ Z2.

75. Prove that when G.C.D.(m,n) > 1, the cyclic group Zmn is not iso-
morphic to Zm ⊕ Zn.
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76. Let a group G′, G′′ ⊂ G be subgroups with the properties: (i) G′∩G′′ =
{e}, (ii) g′g′′ = g′′g′ for all g′ ∈ G′ and g′′ ∈ G′′, and (iii) every g ∈ G can
be written as g′g′′ with g′ ∈ G, g′′ ∈ G′′. Show that G′ and G′′ are normal
subgroups, and G is their internal direct product.

77. Establish the uniqueness of the direct product (defined abstractly as a
“universally repelling object”) using only the universality property of it.

78. Prove that every subgroup in Z2 (the lattice of integer points on the
plane) is isomorphic to {0}, Z, or Z2. Warning: A priori it is not obvious
at all whether every subgroup in Z2 is finitely generated.

79. Use induction on n in order to prove that every subgroup in Zn is
finitely generated.
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Lecture 11. Finite abelian groups

A. Decomposition into p-groups. A finite abelian group F of
order pr11 · · · prkk , where pi are distinct primes, is canonically decom-
posed into the direct sum F1 ⊕ · · · ⊕ Fk of its (unique due to the
commutativity) Sylow subgroups Fi of the orders prii . However, this
fact is more elementary than Sylow’s theorems, so let us obtain it
directly.

One says that an element x of an abelian group belongs to expo-
nent n if nx = 0 (the term comes from the multiplicative notation
gn = e, and applies to non-abelian groups as well). In a finite group,
all elements belong to the exponent |F | by Lagrange’s theorem.

Let m and n be coprime integers such that all elements of our
finite abelian group F belong to the exponent mn (not-necessarily
equal to the order of the group). Define in F two subgroups consisting
of all elements belonging to the exponents m and n separately: F ′ :=
{x ∈ F | mx = 0} and F ′′ := {x ∈ F | nx = 0}. (These are
subgroups because F is abelian; in general (ab)n 6= anbn and has not
reason to equal e even if an = e = bn.) By the Euclidean algorithm,
there exist integers s and t such that tm + sn = 1. Therefore every
x ∈ F can be written as x = x′ + x′′ where x′ = snx ∈ F ′ and
x′′ = tmx ∈ F ′′. On the other hand, the subgroups have trivial
intersection: if x ∈ F ′ ∩ F ′′ then x = tmx + snx = t0 + s0 = 0.
Therefore F decomposes into the internal direct sum F ′⊕F ′′ (where
the possibility that, say, F ′′ = {0} and F ′ = F is not excluded).

Applying this inductively to a finite abelian group F of order
pr11 · · · prkk we obtain the decomposition of F into the direct sum of
subgroups Fi := {x ∈ F | prii x = 0}. Indeed, taking m = pr11 , n =
|F |/m we find that F = F ′ ⊕ F ′′ where F ′ = F1 and F ′′ contains all
the other Fi, since nx = 0 for all x ∈ Fi with i > 1. Proceeding this
way with F ′′ and m = pr22 , we find F ′′ = F2⊕F ′′′ where F ′′′ contains
all Fi with i > 2, and so on. At the end we have F = F1 ⊕ · · · ⊕ Fk.
To summarize:

Proposition. A finite abelian group F of order pr11 · · · prkk where
pi are distinct primes, canonically decomposes into the direct sum
F1 ⊕ · · · ⊕ Fk of its subgroups Fi consisting of all elements belonging
to the exponent prii .

B. Cyclic p-groups and their direct sums. Let F be a non-
zero finite abelian group all of whose elements belong to the exponent
pr with some prime p and r > 0. Eventually we are going to prove
(by induction on r) that F can be decomposed into the direct sum
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of cyclic subgroups whose orders are powers of p. In particular, this
would imply that F is a p-group (which also follows from Sylow’s 1st
theorem). However, we start with analyzing the structure of such
direct sums, and the first step is to look at one cyclic group C ∼= Zpr

of order pr.

As in any cyclic group of any order n, the only subgroups in Zpr

are cyclic (because this is true in Z), consisting of all multiples of a di-
visor of n, which in the case n = pr are powers of p. Consequently, the
subgroups form a tower Zpr ⊃ Zpr−1 ⊃ Zpr−2 · · · ⊃ Zp ⊃ {0} of cyclic
groups formed by all multiples of 1, p, p2, . . . , pr−1, pr respectively (or,
more accurately, of their congruence classes mod pr). Therefore, if
x is a generator of C ∼= Zpr , then the subgroups of C form such a
tower of cyclic subgroups are generated by x, px, p2x, . . . , pr−1x,0.
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Figure 8: Abelian p-groups.

Consider now an abelian p-group of order pn which is a direct
sum of cyclic p-groups: F = C1 ⊕ · · · ⊕ Ck, where Ci

∼= Zpni . Then
pn = pn1 · · · pnk = pn1+···+nk , i.e. ni form a partition of n. We will
assume that n1 ≥ n2 · · · ≥ nk > 0, represent the partition by the
corresponding Young diagram, and turn it into a Young tableau by
filling the rows as shown in Figure 8. Namely, if xi is a generator
of Ci, then the ith row is filled from right to left by the generators
xi, pxi, . . . , p

ni−1xi of the cyclic subgroups of Ci.

As it is not hard do see, the choice of the generators xi, and
even the mere decomposition of F into the direct sum of its cyclic
p-subgroups is not unique (unless F is itself cyclic). Yet we have:
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Proposition. The partition n = n1 + · · · + nk (and hence the
numbers l1, l2, . . . , n = l1 + 2l2 + 3l3 + . . . , of cyclic p-subgroups of
orders p, p2, . . . in a decomposition of F into the direct sum of cyclic
p-groups) does not depend on any choices, but is uniquely determined
by the structure of the group,

Proof. To the Young diagram with n cells representing the par-
tition of n into the parts n1 ≥ n2 ≥ · · · equal to the row lengths of
the diagram, associate the dual partition of n into the parts m1 ≥
m2 ≥ · · · equal the column lengths of it. We recover the dual
partition from the structure of the group F as follows. Denote by
Fs ⊂ F the subgroup of all elements which belong to the exponent
ps: Fs = {a ∈ F | psa = 0}. Then |Fs| = pm1+···+ms . Indeed, every
a ∈ F = ⊕k

i=1Ci is written as a = k1x1 + k2x2 + · · · uniquely in the
sense that a = 0 if and only if ki ≡ 0 mod pni . Therefore psa = 0
if and only if kip

s ≡ 0 mod pni . In other words, a lies in the di-
rect sum

⊕

s≤ni
pni−sCi

⊕

s>ni
Ci. The structure of this direct sum

is represented by the left s columns of the Young tableau (Figure
8) associated with

⊕

i Ci. The order of this direct product equals
pm1+···+ms (p to the number of cells in the left s columns). Thus,
the column lengths ms = logp |Fs|/|Fs−1| of the Young diagram are
determined by the structure of the group, and hence the row lengths
ni are determined as well.

C. Zp-vector spaces. Let F be a finite abelian group all of
whose elements belong to the exponent p (i.e. F1 = F ). One can
consider F as a vector space of some finite dimension n over the field
of scalars Zp, and conclude that F ∼= Zn

p , the direct sum of n copies
of Zp. Perhaps this subject is a good illustration to the fact that
the basic theory of vector spaces looks the same whether the field
of scalars is R or any other field. Not assuming that the reader is
well-familiar with this idea, we provide more explicit details.

Let f1, . . . , fn be a set of generators of F with as few elements as
possible. Then every x ∈ F can be written as x = x1f1 + · · · + xnfn
uniquely in the sense that if x1f1 + · · · + xnfn = 0 then all xi ≡ 0
mod p. For if not, i.e. if say x1 6≡ 0 mod p, then for some s, t ∈ Z, we
have sx1+tp = 1, hence f1 = (sx1+tp)f1 = s(x1f1) = −s(x2f2+ · · ·+
xnfn), making f2, . . . , fn a smaller set of generators. Therefore, the
homomorphism F ∋ x 7→ (x1, . . . , xn) ∈ Zn

p is bijective. Furthermore,
if F ∋ y = y1f1 + · · · + ynfn, then x + y = (x1 + y1)f1 + · · · +
(xn + yn)fn, i.e. the coordinates of x+ y in Zn

p (which are uniquely
determined mod p) are xi + yi. Thus the operation in F translates
into component-wise additions of the arrays of coordinates in Zn

p .
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Moreover, as in usual linear algebra, any set f1, . . . , fk ∈ F lin-
early independent over Zp (in the sense that x1f1 + · · · + xkfk =
0 implies xi ≡ 0 mod p for each i) can be completed to a basis
f1, . . . , fk, fk+1, . . . fn. Namely, all linear combinations x1f1+· · ·+xkfk
form in F a subgroup (really a linear subspace isomorphic to Zk

p). If
it is not the whole of F yet (which ultimately means that k < n),
pick any fk+1 which is not a linear combination of f1, . . . , fk. If
x1f1 + · · · xkfk + xk+1fk+1 = 0, and xk+1 ≡ 0 mod p, then all xi ≡ 0
mod p by the assumption about linear independence of f1, . . . , fk. But
if xk+1 6≡ 0 mod p, then sxk+1 + tp = 1 for some s, t, and we would
be able to express fk+1 as a linear combination of f1, . . . , fk as before
in conflict with our choice of fk+1. (The bottom line here is that in
a field, e.g. Zp, one can divide by any non-zero element.) Therefore
f1, . . . , fk+1 are still linearly independent, and one can proceed this
way to picking fk+2, etc. until linear combinations of fi exhaust the
whole of F .

D. Abelian p-groups. Let us now assume that F is any finite
group whose elements belong to the exponent pr for some r > 0, and
prove by induction on r that F is decomposable into a direct sum
⊕

iCi of cyclic p-groups.
When r = 1, we have F ∼= Zn

p for some n, as it was explained in
the previous section.
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Figure 9: Decomposing into cyclic p-groups.

For r > 1, consider in F the subgroup pF consisting of p-multiples
b = pa of all elements a ∈ F . Then pr−1b = pra = 0, i.e. all ele-
ments of pF belong to the exponent pr−1. By the induction hypoth-

70



esis, we may assume that pF is a finite direct sum
⊕

α Cα of cyclic
groups of some orders prα−1, where of course all rα − 1 < r. The
structure of the group pF is illustrated by the shaded region in Fig-
ure 9, where each yα is some generator of Cα (and rα−1 = 6, 4, 4, 1, 1
for α = 1, 2, 3, 4, 5). Then yα = pxα for some xα ∈ F which therefore
generates in F a cyclic subgroup of order prα . Besides, consider in
F the subgroup F1 := {a ∈ F | pa = 0} of all elements belonging
to the exponent p, and treat it as a vector space over Zp. Note that
zα := prα−2yα (the left shaded column) lie in F1 and are linearly in-
dependent in it, because they lie in different direct cyclic summands
of the “shaded” group pF . Complete the collection zα to a basis of
F1 as explained in the previous section by picking suitable elements
wβ (with β = 1, 2 in the example of Figure 9). Thus, pF becomes
the direct sum of cyclic subgroups of order p generated by zα (which
lie in pF ) and wβ (which don’t). We claim that F is the direct sum
of the cyclic subgroups C̃α of orders prα generated by xα and C̃ ′

β of
order p generated by wβ.

Indeed, given a ∈ F , we can write pa as
∑

α kαyα for some
kα ∈ Z. Then a − ∑

α kαxα ∈ F1 and can therefore be written
as a linear combination

∑

α lαzα + l′βwβ, where zα actually lie in

C̃α. We conclude that all xα and wβ together generate F . Now
suppose

∑

α kαxα +
∑

β l
′
βwβ = 0. We want to show that each l′b

is divisible by p and each kα is divisible by prα . This would imply
the uniqueness of the decomposition of every element in F into the
sum of elements from the cyclic subgroups generated by each xα and
wβ. Multiplying the relation by p we obtain

∑

α kαyα = 0 imply-
ing, due to our induction hypothesis, that each kα = prα−1lα for
some integer lα. Since prα−1xα = zα, our relation assumes the form
∑

α lαzα+
∑

β l
′
βwβ = 0. By construction, zα and wβ form a basis in

F1 over Zp, and hence all lα and l′β are divisible by p. Consequently
each kα = prα−1lα is divisible by prα as desired.

We arrive at the following main result of this lecture.

Theorem. A finite abelian group canonically decomposes into the
direct sum

⊕

i Fi of finite abelian pi-groups over distinct prime factors
pi of the order of the group. Each finite abelian p-group of order pn

is isomorphic to a direct sum Zpn1 ⊕ · · · ⊕ Zpnk of cyclic p-groups,
and different partitions n1 + · · · + nk of n correspond to pairwise
non-isomorphic groups of the same order.
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EXERCISES

80. Prove that Zm ⊕ Zn
∼= Zmn if and only if G.C.D.(m,n) = 1.

81. How many cyclic subgroups are there in the group Z3

5
?

82. Show that Zpr has pr − pr−1 generators.

83. How many generators are there in a cyclic group of order pr1
1
· · · prkk

where pi are distinct primes?

84. Classify up to isomorphism all abelian groups of order 32.

85. The same for abelian groups of order 48. Which of them are cyclic and
which are not?

86. Let A and A′ be abelian p-groups isomorphic to the direct sum of cyclic
groups of orders pn1 ≥ pn2 ≥ · · · and pn

′

1 ≥ pn
′

2 ≥ · · · respectively. Prove
that if A contains a subgroup isomorphic to A′, then ni ≥ n′

i for each i.

87. Find the places of Z×

17
and Z×

32
in the classification of abelian 2-groups.

88. Find the order of the multiplicative group Z×

144
, and find the place of

this group in the classification of finite abelian group of this order.

89. Is the group Z×

1000
cyclic?

90. Prove that Z×

n is cyclic if an only if n is one of the following: (a) a
power pr of an odd prime p, (b) 2pr, (c) 2 or 4.

91. Classify up to isomorphism all groups of order 8 (possibly non-abelian).

92. The same for orders 15, 45.

93. Classify up to isomorphism all finite groups of orders ≤ 15.
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Appendix I: The AC, ZT, and ZL

A. Formulations. A partial ordering “≺” on a set P is a binary
relation which is transitive, and anti-symmetric (meaning that x ≺
y and y ≺ x are impossible simultaneously). A linear (or total)
ordering is a partial ordering for which any two distinct elements are
comparable, i.e. x 6= y implies either x ≺ y or y ≺ x. A totally
ordered set in which every non-empty subset has a least element is
called well-ordered. A subset X ⊂ Y in a totally ordered (or well-
ordered) set is called an initial segment if for every x ∈ X all elements
of Y such that y ≺ x are also in X. A totally ordered subset of a
partially ordered set is often called a chain. An element x0 ∈ P is
maximal if P contains no x ≻ x0.

Axiom of Choice (AC). The Cartesian product of non-empty
sets is non-empty. Equivalently: for any set X, there is a function ϕ
associating to every non-empty subset of X an element of this subset.

Zermelo’s Theorem (ZT). Every set can be well-ordered.

Zorn’s lemma (ZL). A non-empty partially ordered set, in which
every chain has an upper bound, contains at least one maximal ele-
ment.

B. ZL implies ZT. Given a set S, consider the set Σ of pairs
(X,≺) where X is a non-empty subset of S, and ≺ is a well-ordering
on X. Introduce partial ordering on Σ by (X,≺) ≤ (Y,≺) whenever
(X,≺) is an initial segment of (Y,≺). Note that here X ∪ Y = Y is
well-ordered, and the least element in X is the least in Y as well.

Let {(Xα,≺)} be a chain in Σ. Then X := ∪αXα is well-ordered
by ≺. Indeed, X is totally ordered (since any two x1, x2 ∈ X belong
to some Xα1

and Xα2
, whose union is well-ordered), and all Xα have

the same least element. Moreover, (Xα1
,≺) is an initial segment in

(Xα1
∪Xα2

,≺). Therefore x ≺ x1 ∈ Xα1
implies that x ∈ Xα1

, and
therefore (Xα1

,≺) is an initial segment in (X,≺).
Thus, Zorn’s lemma applies to (Σ,≤), meaning that there is a

maximal totally ordered subset (S′,≺) in S. But then S′ = S, for
otherwise x ∈ S − S′ could be added to (S′,≺) as an upper bound,
contradicting its maximality.

C. ZT implies AC. This is obvious: well-order X, and to each
nonempty subset of X, associate its least element.
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D. AC implies ZL. Suppose that in a non-empty partially or-
dered set (P,≺) which does not have any maximal element, every
chain C has an upper bound. Then the set of upper bounds not ly-
ing in C is non-empty, and using the Axiom of Choice, we can pick
one for each C and denote it φ(C).

Let C denote the set of well-ordered chains C in P such that: φ(∅)
is the least element in C, and for every proper initial segment D ⊂ C,
the least element in C −D is φ(D). We have: {φ(∅)} ∈ C.

We claim that for C,C ′ ∈ C, one of them is an initial segment
of the other. Indeed, let D be the maximal common initial segment
of C and C ′ (i.e. the union of all common initial segments). If it is
proper in both C and C ′, then φ(D), being the least element in both
C − D and C ′ − D, can be added to D to form a larger common
initial set of C and C ′ in conflict with the maximality of D. Thus
D coincides with one of C or C ′ making it an initial segment of the
other.

Consider now the union U of all chains from C. As in the deriva-
tion of Zermelo’s theorem from Zorn’s lemma, U is well-ordered, con-
tains each C ∈ C as an initial segment, and has φ(∅) as its least
element. We claim that U ∈ C, i.e. for any proper initial segment
D ⊂ U , φ(D) is the least element in U − D. Indeed, an element
u ∈ U −D lies in some C ∈ C, making D a proper initial segment of
C, and implying that φ(D) is the least element of C −D, and hence
of U −D as well.

By our assumption (on non-existence of maximal elements in P ),
U must have an upper bound not in U . But U cannot have an upper
bound not in U , since in this case U ∪ {φ(U)} will be an element of
C not contained in U , contradicting the choice of U . Thus, maximal
elements exist.

EXERCISES

237. Prove that every vector space has a basis. (Hint: Apply Zorn’s
lemma to the set of linearly independent subsets of a given vector space,
partially ordered by inclusion.)
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Appendix II: The FTA

The Fundamental Theorem of Algebra says that a one-variable com-
plex coefficient polynomial of positive degree has a complex root. It
has many different proofs based on ideas from different subjects, such
as, e.g. complex analysis, or algebraic topology. Here we present one
of the classical proofs (usually associated with the names of Euler, de
Foncenex, Lagrange, Laplace, or Gauss), which seems most suitable
for an algebra course.

Any proof of the FTA must use something from analysis, that
is — exploit somehow the difference between R and Q, because the
root which it claims to exist in C = R(i) cannot, generally speaking,
be found in Q(i) even when the coefficients of the polynomial are
rational.

The only fact from analysis that we will use is the property of a
polynomial f = xn + a1x

n−1 + · · ·+ an with real coefficients to have
a real root provided that the degree n is odd. Indeed, since xn is an
odd function when n is odd, the value f(x) tends to +∞ as x tends
to +∞, and to −∞ as x tends to −∞. By the continuity of f , the
value f(x) must vanish somewhere in between.

This analytic fact will serve us as the base of induction, while the
rest of the argument will be purely algebraic. The first observation
is that the general case of polynomials f with complex coefficients
can be reduced to the case of real coefficients by replacing f with the
product f f̄ . Here f̄ is obtained from f by conjugating its coefficients.
Since f f̄ is invariant under complex conjugation, the coefficients of
it are already real. This special case is sufficient: if it is proved that
f(x0)f̄(x0) = 0 for some x0 ∈ C, then either f(x0) = 0 or f̄(x0) = 0
in which case f(x̄0) = 0. In either case, a complex root of f is found.

Thus, without any loss of generality, it suffices to prove that a
real coefficient polynomial of degree n > 0 has a complex root. The
18th century argument we are about to explain was criticized at the
beginning of the 19th century for being based on the following bold
yet poorly grounded assumption: that the polynomial f with real
coefficients a1, . . . , an is already factored as f = (x−x1) · · · (x−xn),
and the FTA merely claims that at least one of the roots xi lies in
C. The theory of algebraic field extensions sets this assumption on
solid grounds: the abstract construction of the splitting field of a
given polynomial guarantees that over some finite extension of R the
polynomial can indeed be factored into linear factors.
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Let n = 2km where m is odd. The induction will be on k =
0, 1, 2, . . . , with k = 0 as the base. So, we want to prove for k > 0
that at least one of the 2km roots xi of any real coefficient polynomial
f is complex, assuming that the same is true for any real coefficient
polynomial of degree 2k−1m′ where m′ is odd.

Consider the polynomial g =
∏

i<j(x− yij) whose roots are yij =

xixj + c(xi + xj), and c is a real number yet to be selected. The
degree of g equals

(

n
2

)

= n(n − 1)/2 = 2k−1m(2km − 1) (where the
third factor is odd since k > 0) and satisfies the requirement of the
induction hypothesis.

The coefficients of g are symmetric functions of yij, but each yij
is a symmetric expression of xi, xj . Permutations of x1, . . . , xn act
on the set of pairs {xi, xj} and thus merely permute yij leaving the
coefficients of g invariant. By the theorem about symmetric functions
(Lecture 17), the coefficients of g are expressible therefore as poly-
nomials with real (since c ∈ R) coefficients in elementary symmetric
functions σl(x1, . . . , xn) = (−1)lal ∈ R. Thus, the coefficients of g
are real.

By the induction hypothesis, for any c at least one of the expres-
sions xixj + c(xi + xj) is complex. Now we can apply the Pigeonhole
Principle. There are infinitely many possible values of c, and finitely
many pairs i 6= j. Therefore, for at least one pair i 6= j we can
find at least two values of c such that xixj + c(xi + xj) is complex.
This means that for this i, j both α := xi + xj and β := xixj are
complex. Therefore xi, xj are the solutions of the quadratic equation
x2 −αx+ β = 0 with complex coefficients. They can be expressed in
terms of α and β by the quadratic formula. Since complex numbers
have well-defined complex square roots, we conclude that xi, xj are
complex.
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Index

R-module, 73
p-group, 57
p-subgroup, 57

Abel’s theorem, 145
abelian group, 21
action of group on set, 51
affine transformations, 18
algebra, 81
algebra homomorphism, 81
algebra of quaternions, 77
algebra of regular functions, 85
algebraic closure, 120
algebraic element, 111
algebraic extension, 112
algebraic number field, 113
algebraic set, 84
algebraically closed field, 119
alternating group, 29
anti-homomorphism, 51
anti-symmetric polynomial, 108
anti-symmetry, 14
ascending chain, 90
associativity, 20
automorphism group, 35
axiom of choice, 5

Bézout’s theorem, 99
base of induction, 14
binary operation, 20
binary relation, 5

cancellation property, 84
cancellation rule, 20
Cardano’s formula, 148
Cartesian product, 2
casus irreducibilis, 148
category, 25
category of rings, 81
category of unital rings, 81
center, 56
centralizer, 56
chain, 151
character, 139
characteristic, 111
Chinese Remainder Theorem, 13

class formula, 56
codomain, 2
commutative group, 21
commutative ring, 76
commutator, 36, 47
commutator subgroup, 36
complement, 2, 4
complex number, 1
composite element, 86
congruence, 7
conjugacy class, 40
conjugate elements, 127
conjugate subfields, 128
conjugated subgroups, 38
conjugation, 33
content, 96
content-free polynomial, 96
coprime integers, 10
countable set, 5, 15
cycle, 39
cycle decomposition, 39
cyclic extension, 138
cyclic subgroup, 26
cyclotomic field, 132
cyclotomic polynomial, 131

degree of extension, 111
derivative, 123
dihedral group, 29, 55
direct product, 61, 62
direct sum, 61, 62
discriminant, 107, 109, 147
distributive law, 73
divisibility, 14
domain, 2
dual partition, 69

Eisenstein’s criterion, 101
element, 1
elementary symmetric function,

144
elementary symmetric functions,

105
embedding, 111
empty set, 6
epimorphism, 25
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equivalence class, 6
equivalence relation, 6
equivalent divisors, 87
equivariant map, 53
Euclidean algorithm, 9
Euclidean domain, 87
Euler formula, 27
Euler’s ϕ-function, 12
Euler’s formula, 13
Euler’s function, 33
Euler’s theorem, 33
even permutation, 29
expressible in radicals, 137

factor group, 34
Fermat number, 135
Fermat’s Little Theorem, 16, 32
field extension, 111
field of fractions, 93
finite cyclic group, 26
finite extension, 112
finitely generated group, 63
floor function, 59
free abelian group, 63
Frobenius automorphism, 121
function, 2
Fundamental Theorem of

Algebra, 153

Galois group, 128
Gauss sum, 134
Gaussian integers, 77, 89
general linear group, 18, 27
graph, 2
greatest common divisor, 9
group, 15, 20
group action, 51
group algebra, 75
group of diffeomorphisms, 18
group of permutations, 17
group of units, 12, 87

Hamilton’s relations, 77
homeomorphism, 17
homomorphism theorem, 34

ideal, 81
ideal generated by S, 86
identity, 17, 20

identity map, 3
index, 35
induction hypothesis, 14
infinite cyclic group, 26
initial segment, 151
integer, 1
integer part, 59
integral domain, 76
interior automorphism, 35, 38
intersection, 2
inverse, 20
inverse function, 3
inverse image, 4
irreducible element, 83, 87
irreducible number, 11
isomorphism, 22, 25
isomorphism classes, 22

kernel, 26
Klein subgroup, 23

Lagrange resolvent, 138
least common multiple, 39
left action, 51
left congruence, 31
left coset, 31
left ideal, 82
left inverse, 4
left translation, 31
Leibniz’ rule, 123
length of permutation, 28
lexico-graphical ordering, 106
linear map, 27
linear ordering, 14, 151
localization, 93

map, 2
mapping, 2
mathematical induction, 13
maximal ideal, 83
minimal polynomial, 111
module of a ring, 73
monic polynomial, 99
monomorphism, 25
morphisms, 25
multiplication by scalars, 73
multiplicative system, 93

natural number, 1
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Newton’s identity, 110
Newton’s polynomials, 110
non-separable elements, 124
norm, 11, 101
norm of quaternion, 78
normal extension, 127
normal subgroup, 33
normalizer, 60

objects, 25
odd permutation, 29
onto function, 3
opposite group, 52
order, 22
order of a group element, 32
orientation, 18
orthogonal group, 19
orthogonal transformations, 19

partial ordering, 14, 91, 151
partition, 6, 39
perfect field, 124
permutation, 17
PID, 87
Pigeonhole Principle, 154
prime element, 83
prime number, 11
primitive element, 124
primitive polynomial, 96
principal, 83
principal ideal domain, 87
principle of mathematical

induction, 13
product, 86
projection map, 6

quadratic extension, 116
quadratic formula, 137
quaternionic conjugate, 78
quotient group, 34
quotient ring, 82
quotient set, 6

range, 3
rank, 64
rational functions, 95
rational number, 1
real number, 1
reducible element, 86

reflexivity, 5
regular maps, 85
remainder, 9
representation, 75
right action, 51
right congruence, 31
right coset, 31
right ideal, 82
right inverse, 4
right translation, 31
rigid motions, 19
ring, 73
ring homomorphism, 81
rotation group of the cube, 37

Schur’s polynomial, 108
second isomorphism theorem,

141
separable element, 124
separable extension, 124
separable polynomial, 124
set, 1
sign of permutation, 28
simple group, 47
skew-field, 77
smooth structure, 18
solvable group, 141
special linear group, 18
special orthogonal group, 19
special unitary group, 78
splitting field, 127
stabilizer, 53
step of induction, 14
subgroup, 17, 25
subgroup generated by S, 26
subring, 78
subset, 2
sum of ideals, 86
surjective function, 3
Sylow p-subgroup, 57
Sylow’s theorems, 57
symmetric group, 17
symmetric polynomial, 105
symmetricity, 5

third isomorphism theorem, 142
topological structure, 17
torsion subgroup, 63
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total ordering, 14, 151
transcendental element, 111
transfinite induction, 14
transitivity, 5
transposition, 29
trivial ideals, 82
trivial representation, 75
trivial subgroups, 35, 46

UFD, 87
unary operation, 20
uncountable set, 5
undefinable notions, 1
union, 2
unique factorization domain, 87
unital R-module, 79
unital ring, 76
units, 87
upper bound, 91

value, 2
Vandermonde determinant, 108
Vandermonde’s identity, 108
vector space, 73
Vieta’s formulas, 105

Waring’s algorithm, 105
well-ordering, 14, 151
Wilson’s theorem, 49, 102

Young diagram, 39
Young tableau, 39

Zermelo’s theorem, 15
zero divisor, 49, 76
Zorn’s Lemma, 15
Zorn’s lemma, 91
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