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397. Construct a triangle, given the ratio of its altitude to the base,
the angle at the vertex, and the median drawn to one of its lateral
sides

398. Into a given disk segment, inscribe a square such that one of
its sides lies on the chord, and the opposite vertices on the arc.
399. Into a given triangle, inscribe a rectangle with the given ratio
of the sides m : n, so that one of its sides lies on the base of the
triangle, and the opposite vertices on the lateral sides.

6 Geometric mean

184. Definition. The geometric mean between two segments
a and c is defined to be a third segment b such that a : b = b : c.
More generally, the same definition applies to any quantities of the
same denomination. When a, b, and ¢ are positive numbers, the
relationship a : b = b : ¢ can be rewritten as

b? = ac, or b = \/ac.

185. Theorem. In a right triangle:

(1) the altitude dropped from the vertex of the right angle
is the geometric mean between two segments into which the
foot of the altitude divides the hypotenuse, and

(2) each leg is the geometric mean between the hypotenuse
and the segment of it which is adjacent to the leg.

Let AD (Figure 188) be the altitude dropped from the vertex of
the right angle A to the hypotenuse BC'. It is required to prove the
following proportions:

()BD_AD ()BC_AB dBC_AC
AD ~ DC’ Y AB~ BD ™ AC T DC
The first proportion is derived from similarity of the triangles BD A
and ADC. These triangles are similar because

L1 =/4and £2 = /3

as angles with perpendicular respective sides (§80). The sides BD
and AD of ABDA form the first ratio of the required proportion.
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The homologous sides of AADC are AD and DC, 3 and therefore
BD : AD = AD : DC.

The second proportion is derived from similarity of the triangles
ABC and BDA. These triangles are similar because both are right,
and /B is their common acute angle. The sides BC and AB of
AABC form the first ratio of the required proportion. The homol-
ogous sides of ABDA are AB and BD, and therefore BC : AB =
AB: BD.

The last proportion is derived in the same manner from the sim-
ilarity of the triangles ABC and ADC.

Figure 188 Figure 189

186. Corollary. Let A (Figure 189) be any point on a circle, de-
scribed about a diameter BC'. Connecting this point by chords with
the endpoints of the diameter we obtain a right triangle such that
its hypotenuse is the diameter, and its legs are the chords. Applying
the theorem to this triangle we arrive at the following conclusion:

The perpendicular dropped from any point of a circle to its diam-
eter is the geometric mean between the segments into which the foot
of the perpendicular divides the diameter, and the chord connecting
this point with an endpoint of the diameter is the geometric mean
between the diameter and the segment of it adjacent to the chord.

187. Problem. 7To construct the geometric mean between two
segments a and c.

We give two solutions.

(1) On a line (Figure 190), mark segments AB = a and BC = ¢
next to each other, and describe a semicircle on AC as the diameter.

3In order to avoid mistakes in determining which sides of similar triangles
are homologous to each other, it is convenient to mark angles opposite to the
sides in question of one triangle, then find the angles congruent to them in the
other triangle, and then take the sides opposite to these angles. For instance, the
sides BD and AD of ABDA are opposite to the angles 1 and 3; these angles are
congruent to the angles 4 and 2 of AADC, which are opposite to the sides AD
and DC. Thus the sides AD and DC correspond to BD and AD respectively.
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From the point B, erect the perpendicular to AC up to the inter-
section point D with the semicircle. The perpendicular BD is the
required geometric mean between AB and BC.

D D

A B C b
a b
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o

Figure 190 Figure 191

(2) From the endpoint A of a ray (Figure 191), mark the given
segments a and b. On the greater of them, describe a semicircle.
From the endpoint of the smaller one, erect the perpendicular up to
the intersection point D with the semicircle, and connect D with A.
The chord AD is the required geometric mean between a and b.

188. The Pythagorean Theorem. The previous theorems
allow one to obtain a remarkable relationship between the sides of any
right triangle. This relationship was proved by the Greek geometer
Pythagoras of Samos (who lived from about 570 B.C.to about 475
B.C.) and is named after him.

Theorem. If the sides of a right triangle are measured
with the same unit, then the square of the length of its hy-
potenuse is equal to the sum of the squares of the lengths
of its legs.

A
)
vy

Figure 192

Let ABC (Figure 192) be a right triangle, and AD the altitude
dropped to the hypotenuse from the vertex of the right angle. Sup-
pose that the sides and the segments of the hypotenuse are measured
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by the same unit, and their lengths are expressed by the numbers
a, b, ¢, ¢ and b.* Applying the theorem of §185, we obtain the
proportions:

a:c=c:canda:b=b:0V,

or equivalently:
acd = and ab = b

Adding these equalities, we find:
ac +abl =+, or a(d +V)=c*+b

But ¢ + V' = a, and therefore a? = b? + 2.

This theorem is often stated in short: the square of the hypotenuse
equals the sum of the squares of the legs.

Example. Suppose that the legs measured with some linear unit
are expressed by the numbers 3 and 4. Then the hypotenuse is
expressed in the same units by a number z such that

2?2 =32 +42=9+16 =25, and hence z = v/25 = 5.

Remark. The right triangle with the sides 3, 4, and 5 is sometimes
called Egyptian because it was known to ancient Egyptians. It is
believed they were using this triangle to construct right angles on
the land surface in the following way. A circular rope marked by 12
knots spaced equally would be stretched around three poles to form
a triangle with the sides of 3, 4, and 5 spacings. Then the angle
between the sides equal to 3 and 4 would turn out to be right. °

Yet another formulation of the Pythagorean theorem, namely the
one known to Pythagoras himself, will be given in §259.

189. Corollary. The squares of the legs have the same ratio as
the segments of the hypotenuse adjacent to them.

Indeed, from formulas in §188 we find ¢® : b2 = ac’ : ab/ = ¢ : b.
Remarks. (1) The three equalities

ad =, abl = b2, a®> = b* + 2,

Tt is customary to denote sides of triangles by the lowercase letters corre-
sponding to the uppercase letters which label the opposite vertices.

Right triangles whose sides are measured by whole numbers are called
Pythagorean. One can prove that the legs x and y, and the hypotenuse z
of such triangles are expressed by the formulas: = = 2ab,y = a® — b?, z = a® + b,
where a and b are arbitrary whole numbers such that a > b.
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can be supplemented by two more:
V+d =a, and R2=V¢,

where h denotes the length of the altitude AD (Figure 192). The
third of the equalities, as we have seen, is a consequence of the first
two and of the fourth, so that only four of the five equalities are
independent. As a result, given two of the six numbers a, b, ¢, b, ¢
and h, we can compute the remaining four. For example, suppose we
are given the segments of the hypotenuse v’ =5 and ¢/ = 7. Then

a=b+¢ =12, ¢ =Vad =V12-7 =84 = 2V/21,
b=+Vab =v12-5=+60, h = V¥ =57 = /35.

(2) Later on we will often say: “the square of a segment” instead
of “the square of the number expressing the length of the segment,”
or “the product of segments” instead of “the product of numbers
expressing the lengths of the segments.” We will assume therefore
that all segments have been measured using the same unit of length.

190. Theorem. In every triangle, the square of a side
opposite to an acute angle is equal to the sum of the squares
of the two other sides minus twice the product of (any) one
of these two sides and the segment of this side between the
vertex of the acute angle and the foot of the altitude drawn
to this side.

Let BC be the side of AABC (Figures 193 and 194), opposite
to the acute angle A, and BD the altitude dropped to another side,
e.g. AC, (or to its extension). It is required to prove that

BC? = AB? + AC? —2AC - AD,

or, using the notation of the segments by single lowercase letters as
shown on Figures 193 or 194, that

a® =b* + ¢ — 2bc.
From the right triangle BDC, we have:
a® = h% + (d)2 (%)

Let us compute each of the squares h? and (a’)?. From the right
triangle BAD, we find: h? = ¢2—(¢/)%. On the other hand, a’ = b—¢/
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(Figure 193) or a’ = ¢/ — b (Figure 194). In both cases we obtain the
same expression for (a’)%:

(@) =(b—-)=(d —b)?=0b*—2bc + ().
Now the equality (*) can be rewritten as

a? =c* — () + b —2bd + () = +b* - 2bc.

B B
c h a C a h
A D C A C D
c a b al
- b " - c L
Figure 193 Figure 194

191. Theorem. In an obtuse triangle, the square of the
side opposite to the obtuse angle is equal to the sum of
the squares of the other two sides plus twice the product
of (any) one of these two sides and the segment on the ex-
tension of this side between the vertex of the obtuse angle
and the foot of the altitude drawn to this side.

Let AB be the side of AABC (Figure 194), opposite to the obtuse
angle C, and BD the altitude dropped to the extension of another
side, e.g. AC'. It is required to prove that

AB? = AC? + BC? + 2AC - CD,
or, using the abbreviated notation shown in Figure 194, that
& =a® 4 b* 4 2bd’.
From the right triangles ABD and CBD, we find:

02:h2+(6/)2 :aQ—(a/)z—}—(a/—l—b)Q:
a® — (a)? + (a')? +2bd’ +b* = a® +b* 4 2bd’.
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192. Corollary. From the last three theorems, we conclude,
that the square of a side of a triangle is equal to, greater than, or
smaller than the sum of the squares of the other two sides, depending
on whether the angle opposite to this side is right, acute, or obtuse.

Furthermore, this implies the converse statement: an angle of a
triangle turns out to be right, acute or obtuse, depending on whether
the square of the opposite side is equal to, greater than, or smaller
than the sum of the squares of the other two sides.

193. Theorem. The sum of the squares of the diagonals

of a parallelogram is equal to the sum of the squares of its
sides (Figure 195).

Figure 195

From the vertices B and C of a parallelogram ABC D, drop the
perpendiculars BE and C'F to the base AD. Then from the triangles
ABD and ACD, we find:

BD? = AB* + AD?> —2AD - AE, AC? = AD?>+ CD?+2AD - DF.

The right triangles ABE and DCF' are congruent, since they have
congruent hypotenuses and congruent acute angles, and hence AE =
DF. Having noticed this, add the two equalities found earlier. The
summands —2AD - AE and +2AD - DF cancel out, and we get:

BD?*+ AC? = AB?>+ AD?>+ AD?*+CD? = AB?>+BC?*+CD?*+ AD?.

194. We return to studying geometric means in a disk.

Theorem. If through a point (M, Figure 196), taken inside
a disk, a chord (AB) and a diameter (CD) are drawn, then
the product of the segments of the chord (AM - M B) is equal
to the product of the segments of the diameter (CM - M D).

Drawing two auxiliary chords AC and BD, we obtain two tri-
angles AMC and DM B (shaded in Figure 196) which are similar,
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since their angles A and D are congruent as inscribed intercepting
the same arc BC, and the angles B and D are congruent as inscribed
intercepting the same arc AD. From similarity of the triangles we
derive: AM : M D = CM : M B, or equivalently

AM -MB=CM -MD.

Figure 196 Figure 197

195. Corollaries. (1) For all chords (AB, EF, KL, Figure 196)
passing through the same point (M) inside a disk, the product of the
segments of each chord is constant, i.e. it is the same for all such
chords, since for each chord it is equal to the product of the segments
of the diameter.

(2) The geometric mean between the segments (AM and M B) of
a chord (AB), passing through a point (M) given inside a disk, is
the segment (EM or MF) of the chord (EF) perpendicular to the
diameter (CD), at the given point, because the chord perpendicular
to the diameter is bisected by it, and hence

EM =MF =vVAM - MB.

196. Theorem. The tangent (MC, Figure 197) from a point
(M) taken outside a disk is the geometric mean between a
secant (M A), drawn through the same point, and the exterior
segment of the secant (MB).

Draw the auxiliary chords AC and BC, and consider two triangles
MCA and MCB (shaded in Figure 197). They are similar because
/M is their common angle, and /M CB = Z/BAC since each of them
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is measured by a half of the arc BC. Taking the sides M A and MC
in AMCA, and the homologous sides MC and M B in AMCB, we
obtain the proportion: M A : MC = MC : M B and conclude, that
the tangent M C is the geometric mean between the segments M A
and M B of the secant.

197. Corollaries. (1) The product of a secant (M A, Figure
197), passing through a point (M) outside a disk, and the exterior
part of the secant (M B) is equal to the square of the tangent (MC)
drawn from the same point, i.e.:

MA-MB = MC?.

(2) For all secants (M A, MD, MFE, Figure 197), drawn from a
point (M) given outside a disk, the product of each secant and the
exterior segment of it, is constant, i.e. the product is the same for
all such secants, because for each secant this product is equal to the
square M C? of the tangent drawn from the point M.

198. Theorem. The product of the diagonals of an in-
scribed quadrilateral is equal to the sum of the products of
its opposite sides.

This proposition is called Ptolemy’s theorem after a Greek
astronomer Claudius Ptolemy (85 — 165 A.D.) who discovered it.

A

C

Figure 198 Figure 199

Let AC and BD be the diagonals of an inscribed quadrilateral
ABCD (Figure 198). It is required to prove that

AC-BD =AB-CD+ BC - AD.



6. Geometric mean 159

Construct the angle BAFE congruent to ZDAC, and let E be the
intersection point of the side AF of this angle with the diagonal BD.
The triangles ABE and ADC' (shaded in Figure 198) are similar,
since their angles B and C are congruent (as inscribed intercept-
ing the same arc AD), and the angles at the common vertex A are
congruent by construction. From the similarity, we find:

AB: AC=BE :CD, ie. AC-BE=AB-CD.

Consider now another pair of triangles, namely AABC and AAED
(shaded in Figure 199). They are similar, since their angles BAC' and
DAF are congruent (as supplementing to ZBAD the angles congru-
ent by construction), and the angles ACB and ADB are congruent
as inscribed intercepting the same angle AB. We obtain:

BC:ED=AC: AD, ie. AC-ED = BC-AD.
Summing the two equality, we find:

AC(BE + ED) = AB-CD + BC - AD, where BE + ED = BD.

EXFERCISES

Prove theorems:

400. If a diagonal divides a trapezoid into two similar triangles, then
this diagonal is the geometric mean between the bases.

401.* If two disks are tangent externally, then the segment of an ex-
ternal common tangent between the tangency points is the geometric
mean between the diameters of the disks.

402. 1If a square is inscribed into a right triangle in such a way
that one side of the square lies on the hypotenuse, then this side
is the geometric mean between the two remaining segments of the
hypotenuse.

403.* If AB and C'D are perpendicular chords in a circle of radius
R, then AC? + BD? = 4R?.

404. If two circles are concentric, then the sum of the squares of
the distances from any point of one of them to the endpoints of any
diameter of the other, is a fixed quantity.

Hint: See §193.

405. If two segments AB and C'D (or the extensions of both seg-
ments) intersect at a point E, such that AE - EB = CE - ED, then
the points A, B, C, D lie on the same circle.

Hint: This is the theorem converse to that of §195 (or §197).
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406.% In every AABC, the bisector AD satisfies AD? = AB - AC —
DB - DC.

Hint: Extend the bisector to its intersection E with the circum-
scribed circle, and prove that AABD is similar to AAEC.

407 In every triangle, the ratio of the sum of the squares of all
medians to the sum of the squares of all sides is equal to 5/4.

408. If an isosceles trapezoid has bases a and b, lateral sides ¢, and
diagonals d, then ab + ¢? = d>.

409. The diameter AB of a circle is extended past B, and at a point
C on this extension CD 1 AB is erected. If an arbitrary point M
of this perpendicular is connected with A, and the other intersection
point of AM with the circle is denoted A’, then AM - AA’ is a fixed
quantity, i.e. it does not depend on the choice of M.

410.* Given a circle O and two points A and B. Through these
points, several circles are drawn such that each of them intersects
with or is tangent to the circle O. Prove that the chords connecting
the intersection points of each of these circles, as well as the tangents
at the points of tangency with the circle O, intersect (when extended)
at one point lying on the extension of AB.

411. Using the result of the previous problem, find a construction of
the circle passing through two given points and tangent to a given
circle.

Find the geometric locus of:

412. Points for which the sum of the squares of the distances to two
given points is a fixed quantity.
Hint: See §193.

413. Points for which the difference of the squares of the distances
from two given points is a fixed quantity.

Computation problems

414. Compute the legs of a right triangle if the altitude dropped
from the vertex of the right angle divides the hypotenuse into two
segments m and n.

415. Compute the legs of a right triangle if a point on the hypotenuse
equidistant from the legs divides the hypotenuse into segments 15 and
20 c¢m long.

416. The centers of three pairwise tangent circles are vertices of a

right triangle. Compute the smallest of the three radii if the other
two are 6 and 4 cm.



