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130. Ceva’s theorem.
Theorem. Given a triangle ABC (Figure 138) and points

A′, B′, and C ′ on the sides BC, CA, and AB respectively,
the lines AA′, BB′, and CC ′ are concurrent if and only if
the vertices can be equipped with masses such that A′, B′, C ′

become centers of mass of the pairs: B and C, C and A, A
and B respectively.

Suppose A, B, and C are material points, and A′, B′ and C ′

are positions of the centers of mass of the pairs B and C, C and A,
A and B. Then, by the regrouping property, the center of mass of
the whole system lies on each of the segments AA′, BB′, and CC ′.
Therefore these segments are concurrent.

Conversely, assume that the lines AA′, BB′, and CC ′ are concur-
rent. Assign an arbitrary mass mA = m to the vertex A, and then
assign masses to the vertices B and C so that C ′ and B′ become
the centers of mass of the pairs A and B, and A and C respectively,
namely:

mB =
AC ′

C ′B
m, and mC =

AB′

B′C
m.

Then the center of mass of the whole system will lie at the intersection
point M of the segments BB′ and CC ′. On the other hand, by
regrouping, it must lie on the line connecting the vertex A with the
center of mass of the pair B and C. Therefore the center of mass of
this pair is located at the intersection point A′ of the line AM with
the side BC.
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Corollary (Ceva’s theorem). In a triangle ABC, the segments
AA′, BB′, and CC ′, connecting the vertices with points on the oppo-
site sides, are concurrent if and only if

AC ′

C ′B
· BA′

A′C
· CB′

B′A
= 1. (∗)
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Indeed, when the lines are concurrent, the equality becomes obvious
when rewritten in terms of the masses:

mB

mA

· mC

mB

· mA

mC

= 1.

Conversely, the relation (∗) means that if one assigns masses as in
the proof of the theorem, i.e. so that mB : mA = AC ′ : C ′B and
mC : mA = AB′ : B′C, then the proportion mC : mB = BA′ : A′C
holds too. Therefore all three points C ′, B′, and A′ are the centers
of mass of the corresponding pairs of vertices. Now the concurrency
property is guaranteed by the theorem.

Problem. In a triangle ABC (Figure 139), let A′, B′, and C ′

denote points of tangency of the inscribed circle with the sides. Prove
that the lines AA′, BB′, and CC ′ are concurrent.

Solution 1. We have: AB′ = AC ′, BC ′ = BA′, and CA′ =
CB′ (as tangent segments drawn from the vertices to the same circle).
Therefore the relation (∗) holds true, and the concurrency follows
from the corollary.

Solution 2. Assigning masses mA = 1/AB′ = 1/AC ′, mB =
1/BC ′ = 1/BA′, and mC = 1/CA′ = 1/CB′, we make A′, B′, and
C ′ the centers of mass of the corresponding pairs of vertices, and
therefore the concurrency follows from the theorem.

131. Menelaus’ theorem.

Lemma. Three points A1, A2, and A3 are collinear (i.e. lie
on the same line) if and only if they can be equipped with non-
zero pseudo-masses m1, m2, and m3 (they are allowed therefore
to have different signs) such that

m1 + m2 + m3 = 0, and m1

−−→
OA1 + m2

−−→
OA2 + m3

−−→
OA3 = �0.

If the points are collinear, then one can make the middle one (let it
be called A3) the center of mass of the points A1 and A2 by assigning
their masses according to the proportion m2 : m1 = A1A3 : A3A2.

Then, for any origin O, we have: m1

−−→
OA1+m2

−−→
OA2−(m1+m2)

−−→
OA3 =

�0, i.e. it suffices to put m3 = −m1 − m2.

Conversely, if the required pseudo-masses exist, one may assume
(changing, if necessary, the signs of all three) that one of them (say,
m3) is negative while the other two are positive. Then m3 = −m1 −
m2, and the relation m1

−−→
OA1 + m2

−−→
OA2 − (m1 + m2)

−−→
OA3 = �0 means

that A3 is the position of the center of mass of the pair of material
points A1 and A2. Thus A3 lies on the segment A1A2.
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Corollary (Menelaus’ theorem.) Any points A′, B′, and C ′ (Fig-
ure 140) lying on the sides BC, CA, and AB respectively of �ABC,
or on their extensions, are collinear, if and only if

AC ′

C ′B
· BA′

A′C
· CB′

B′A
= 1.

Remark. This relation looks identical to (∗), and it may seem puz-
zling how the same relation can characterize triples of points A′, B′,
C ′ satisfying two different geometric conditions. In fact in Menelaus’
theorem (see Figure 140), either one or all three of the points must lie
on extensions of the sides, so that the same relation is applied to two
mutually exclusive geometric situations. Furthermore, let us identify
the sides of �ABC with number lines by directing them as shown on
Figure 140, i.e. the side AB from A to B, BC from B to C, and CA
from C to A. Then the segments AC ′, C ′B, BA′, etc. in the above
relation can be understood as signed quantities, i.e. real numbers
whose absolute values are equal to the lengths of the segments, and

the signs are determined by the directions of the vectors
−−→
AC ′,

−−→
C ′B,−−→

BA′, etc. on the respective number lines. With this convention, the
correct form of the relation in Menelaus’ theorem is:

AC ′

C ′B
· BA′

A′C
· CB′

B′A
= −1, (∗∗)

thereby differing from the relation in Ceva’s theorem by the sign.3

To prove Menelaus’ theorem in this improved formulation, note
that we can always assign to the vertices A, B, and C some real
numbers a, b, and c so that C ′ (resp. B′) becomes the center of
mass of the pair of points A and B (resp. C and A) equipped with
pseudo-masses a and −b (resp. c and −a). Namely, it suffices to take:
−b : a = AC ′ : C ′B and −a : c = CB′ : B′A. Then the relation (∗∗)
means that BA′ : A′C = −c : b, i.e. A′ is the center of mass of the
pair B and C equipped with pseudo-masses b and −c respectively.

Thus, we have: (a−b)
−−→
OC ′ = a

−→
OA−b

−−→
OB, (c−a)

−−→
OB′ = c

−−→
OC−a

−→
OA,

and (b− c)
−−→
OA′ = b

−−→
OB − c

−−→
OC. Adding these equalities, and putting

mA = b − c, mB = c − a, mC = a − b, we find:

mA

−−→
OA′ + mB

−−→
OB′ + mC

−−→
OC ′ = �0, mA + mB + mC = 0.

3In Ceva’s theorem, it is also possible to apply the sign convention and consider
points on the extensions of the sides. Then the relation (∗) remains the correct
criterion for the three lines to be concurrent (or parallel). When (∗) holds, an
even number (i.e. 0 or 2) of the points lie on the extensions of the sides.
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Therefore the points A′, B′, and C ′ are collinear.

Conversely, for any points C ′ and B′ in the interior or on the
extensions of the sides AB and CA, we can find a point A′ on the
line BC such that the relation (∗∗) holds true. Then, according to
the previous argument, points A′, B′, and C ′ are collinear, i.e. point
A′ must coincide with the point of intersection of the lines B′C ′ and
BC. Thus the relation (∗∗) holds true for any three collinear points
on the sides of a triangle or on their extensions.

Figure 140
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132. The method of barycenters demystified. This method,
developed and applied in §§128–131 to some problems of plane ge-
ometry, can be explained using geometry of vectors in space.
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Position the plane P in space in such a way (Figure 141) that it
misses the point O chosen for the origin. Then, to each point A on
the plane, one can associate a line in space passing through the origin,
namely the line OA. When the point comes equipped with a mass
(or pseudo-mass) m, we associate to this material point on the plane

the vector �a = m
−→
OA in space. We claim that this way, the center of

mass of a system of material points on the plane corresponds to the
sum of the vectors associated to them in space. Indeed, if A denotes
the center of mass of a system of n material points A1, . . . , An in
the plane of masses m1, . . . , mn, then the total mass is equal to
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m = m1 + · · · + mn, and the corresponding vector in space is

�a = m
−−→
OM = m1

−−→
OA1 + · · · + mn

−−→
OAn = �a1 + · · · + �an.

In particular, the regrouping property of the center of mass follows
from associativity of the addition of vectors.
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Remark. The above method of associating lines passing through
the origin to points of the plane P turns out to be fruitful and leads
to the so-called projective geometry. In projective geometry, be-
side ordinary points of the plane P , there exist “points at infinity.”
They correspond to lines passing through the origin and parallel to
P (e.g. EF on Figure 142). Moreover, lines on the plane P (e.g.
AB or CD) correspond to planes (Q or R) passing through the ori-
gin. When AB‖CD, the lines do not intersect on the plane P , but
in projective geometry they intersect “at infinity,” namely at the
“point” corresponding to the line EF of intersection of the planes Q
and R. Thus, the optical illusion that two parallel rails of a railroad
track meet at the line of the horizon becomes reality in projective
geometry.

EXERCISES

251. In the plane, let A, B, C, D, E be arbitrary points. Construct

the point O such that
−→
OA +

−−→
OB +

−−→
OC =

−−→
OD +

−−→
OE.

252.� In a circle, three non-intersecting chords AB, CD, and EF are
given, each congruent to the radius of the circle, and the midpoints
of the segments BC, DE, and FA are connected. Prove that the
resulting triangle is equilateral.

253. Prove that if a polygon has several axes of symmetry, then they
are concurrent.

254. Prove that the three segments connecting the midpoints of op-
posite edges of a tetrahedron bisect each other.

255. Prove that bisectors of exterior angles of a triangle meet exten-
sions of the opposite sides at collinear points.


